{-| Copyright : (C) 2013-2016, University of Twente, 2016-2019, Myrtle Software Ltd, 2017 , Google Inc., 2021-2022, QBayLogic B.V. License : BSD2 (see the file LICENSE) Maintainer : QBayLogic B.V. <devops@qbaylogic.com> Block RAM primitives = Using RAMs #usingrams# We will show a rather elaborate example on how you can, and why you might want to use 'blockRam's. We will build a \"small\" CPU + Memory + Program ROM where we will slowly evolve to using 'blockRam's. Note that the code is /not/ meant as a de-facto standard on how to do CPU design in Clash. We start with the definition of the Instructions, Register names and machine codes: @ {\-\# LANGUAGE RecordWildCards, TupleSections, DeriveAnyClass \#-\} module CPU where import Clash.Prelude type InstrAddr = Unsigned 8 type MemAddr = Unsigned 5 type Value = Signed 8 data Instruction = Compute Operator Reg Reg Reg | Branch Reg Value | Jump Value | Load MemAddr Reg | Store Reg MemAddr | Nop deriving (Eq, Show) data Reg = Zero | PC | RegA | RegB | RegC | RegD | RegE deriving (Eq, Show, Enum, Generic, NFDataX) data Operator = Add | Sub | Incr | Imm | CmpGt deriving (Eq, Show) data MachCode = MachCode { inputX :: Reg , inputY :: Reg , result :: Reg , aluCode :: Operator , ldReg :: Reg , rdAddr :: MemAddr , wrAddrM :: Maybe MemAddr , jmpM :: Maybe Value } nullCode = MachCode { inputX = Zero , inputY = Zero , result = Zero , aluCode = Imm , ldReg = Zero , rdAddr = 0 , wrAddrM = Nothing , jmpM = Nothing } @ Next we define the CPU and its ALU: @ cpu :: Vec 7 Value -- ^ Register bank -> (Value,Instruction) -- ^ (Memory output, Current instruction) -> ( Vec 7 Value , (MemAddr, Maybe (MemAddr,Value), InstrAddr) ) cpu regbank (memOut, instr) = (regbank', (rdAddr, (,aluOut) 'Prelude.<$>' wrAddrM, bitCoerce ipntr)) where -- Current instruction pointer ipntr = regbank 'Clash.Sized.Vector.!!' PC -- Decoder (MachCode {..}) = case instr of Compute op rx ry res -> nullCode {inputX=rx,inputY=ry,result=res,aluCode=op} Branch cr a -> nullCode {inputX=cr,jmpM=Just a} Jump a -> nullCode {aluCode=Incr,jmpM=Just a} Load a r -> nullCode {ldReg=r,rdAddr=a} Store r a -> nullCode {inputX=r,wrAddrM=Just a} Nop -> nullCode -- ALU regX = regbank 'Clash.Sized.Vector.!!' inputX regY = regbank 'Clash.Sized.Vector.!!' inputY aluOut = alu aluCode regX regY -- next instruction nextPC = case jmpM of Just a | aluOut /= 0 -> ipntr + a _ -> ipntr + 1 -- update registers regbank' = 'Clash.Sized.Vector.replace' Zero 0 $ 'Clash.Sized.Vector.replace' PC nextPC $ 'Clash.Sized.Vector.replace' result aluOut $ 'Clash.Sized.Vector.replace' ldReg memOut $ regbank alu Add x y = x + y alu Sub x y = x - y alu Incr x _ = x + 1 alu Imm x _ = x alu CmpGt x y = if x > y then 1 else 0 @ We initially create a memory out of simple registers: @ dataMem :: HiddenClockResetEnable dom => Signal dom MemAddr -- ^ Read address -> Signal dom (Maybe (MemAddr,Value)) -- ^ (write address, data in) -> Signal dom Value -- ^ data out dataMem rd wrM = 'Clash.Prelude.Mealy.mealy' dataMemT ('Clash.Sized.Vector.replicate' d32 0) (bundle (rd,wrM)) where dataMemT mem (rd,wrM) = (mem',dout) where dout = mem 'Clash.Sized.Vector.!!' rd mem' = case wrM of Just (wr,din) -> 'Clash.Sized.Vector.replace' wr din mem _ -> mem @ And then connect everything: @ system :: ( KnownNat n , HiddenClockResetEnable dom ) => Vec n Instruction -> Signal dom Value system instrs = memOut where memOut = dataMem rdAddr dout (rdAddr, dout, ipntr) = 'Clash.Prelude.Mealy.mealyB' cpu ('Clash.Sized.Vector.replicate' d7 0) (memOut,instr) instr = 'Clash.Prelude.ROM.asyncRom' instrs 'Prelude.<$>' ipntr @ Create a simple program that calculates the GCD of 4 and 6: @ -- Compute GCD of 4 and 6 prog = -- 0 := 4 Compute Incr Zero RegA RegA :> replicate d3 (Compute Incr RegA Zero RegA) ++ Store RegA 0 :> -- 1 := 6 Compute Incr Zero RegA RegA :> replicate d5 (Compute Incr RegA Zero RegA) ++ Store RegA 1 :> -- A := 4 Load 0 RegA :> -- B := 6 Load 1 RegB :> -- start Compute CmpGt RegA RegB RegC :> Branch RegC 4 :> Compute CmpGt RegB RegA RegC :> Branch RegC 4 :> Jump 5 :> -- (a > b) Compute Sub RegA RegB RegA :> Jump (-6) :> -- (b > a) Compute Sub RegB RegA RegB :> Jump (-8) :> -- end Store RegA 2 :> Load 2 RegC :> Nil @ And test our system: @ >>> sampleN @System 32 (system prog) [0,0,0,0,0,0,4,4,4,4,4,4,4,4,6,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,2] @ to see that our system indeed calculates that the GCD of 6 and 4 is 2. === Improvement 1: using @asyncRam@ As you can see, it's fairly straightforward to build a memory using registers and read ('Clash.Sized.Vector.!!') and write ('Clash.Sized.Vector.replace') logic. This might however not result in the most efficient hardware structure, especially when building an ASIC. Instead it is preferable to use the 'Clash.Prelude.RAM.asyncRam' function which has the potential to be translated to a more efficient structure: @ system2 :: ( KnownNat n , HiddenClockResetEnable dom ) => Vec n Instruction -> Signal dom Value system2 instrs = memOut where memOut = 'Clash.Prelude.RAM.asyncRam' d32 rdAddr dout (rdAddr,dout,ipntr) = 'Clash.Prelude.mealyB' cpu ('Clash.Sized.Vector.replicate' d7 0) (memOut,instr) instr = 'Clash.Prelude.ROM.asyncRom' instrs 'Prelude.<$>' ipntr @ Again, we can simulate our system and see that it works. This time however, we need to disregard the first few output samples, because the initial content of an 'Clash.Prelude.RAM.asyncRam' is /undefined/, and consequently, the first few output samples are also /undefined/. We use the utility function 'Clash.XException.printX' to conveniently filter out the undefinedness and replace it with the string @\"undefined\"@ in the first few leading outputs. @ >>> printX $ sampleN @System 32 (system2 prog) [undefined,undefined,undefined,undefined,undefined,undefined,4,4,4,4,4,4,4,4,6,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,2] @ === Improvement 2: using @blockRam@ Finally we get to using 'blockRam'. On FPGAs, 'Clash.Prelude.RAM.asyncRam' will be implemented in terms of LUTs, and therefore take up logic resources. FPGAs also have large(r) memory structures called /block RAMs/, which are preferred, especially as the memories we need for our application get bigger. The 'blockRam' function will be translated to such a /block RAM/. One important aspect of block RAMs is that they have a /synchronous/ read port, meaning that, unlike the behavior of 'Clash.Prelude.RAM.asyncRam', given a read address @r@ at time @t@, the value @v@ in the RAM at address @r@ is only available at time @t+1@. For us that means we need to change the design of our CPU. Right now, upon a load instruction we generate a read address for the memory, and the value at that read address is immediately available to be put in the register bank. Because we will be using a block RAM, the value is delayed until the next cycle. Thus, we will need to also delay the register address to which the memory address is loaded: @ cpu2 :: (Vec 7 Value,Reg) -- ^ (Register bank, Load reg addr) -> (Value,Instruction) -- ^ (Memory output, Current instruction) -> ( (Vec 7 Value, Reg) , (MemAddr, Maybe (MemAddr,Value), InstrAddr) ) cpu2 (regbank,ldRegD) (memOut,instr) = ((regbank', ldRegD'), (rdAddr, (,aluOut) 'Prelude.<$>' wrAddrM, bitCoerce ipntr)) where -- Current instruction pointer ipntr = regbank 'Clash.Sized.Vector.!!' PC -- Decoder (MachCode {..}) = case instr of Compute op rx ry res -> nullCode {inputX=rx,inputY=ry,result=res,aluCode=op} Branch cr a -> nullCode {inputX=cr,jmpM=Just a} Jump a -> nullCode {aluCode=Incr,jmpM=Just a} Load a r -> nullCode {ldReg=r,rdAddr=a} Store r a -> nullCode {inputX=r,wrAddrM=Just a} Nop -> nullCode -- ALU regX = regbank 'Clash.Sized.Vector.!!' inputX regY = regbank 'Clash.Sized.Vector.!!' inputY aluOut = alu aluCode regX regY -- next instruction nextPC = case jmpM of Just a | aluOut /= 0 -> ipntr + a _ -> ipntr + 1 -- update registers ldRegD' = ldReg -- Delay the ldReg by 1 cycle regbank' = 'Clash.Sized.Vector.replace' Zero 0 $ 'Clash.Sized.Vector.replace' PC nextPC $ 'Clash.Sized.Vector.replace' result aluOut $ 'Clash.Sized.Vector.replace' ldRegD memOut $ regbank @ We can now finally instantiate our system with a 'blockRam': @ system3 :: (KnownNat n , HiddenClockResetEnable dom ) => Vec n Instruction -> Signal dom Value system3 instrs = memOut where memOut = 'blockRam' (replicate d32 0) rdAddr dout (rdAddr,dout,ipntr) = 'Clash.Prelude.mealyB' cpu2 (('Clash.Sized.Vector.replicate' d7 0),Zero) (memOut,instr) instr = 'Clash.Prelude.ROM.asyncRom' instrs 'Prelude.<$>' ipntr @ We are, however, not done. We will also need to update our program. The reason being that values that we try to load in our registers won't be loaded into the register until the next cycle. This is a problem when the next instruction immediately depends on this memory value. In our case, this was only the case when we loaded the value @6@, which was stored at address @1@, into @RegB@. Our updated program is thus: @ prog2 = -- 0 := 4 Compute Incr Zero RegA RegA :> replicate d3 (Compute Incr RegA Zero RegA) ++ Store RegA 0 :> -- 1 := 6 Compute Incr Zero RegA RegA :> replicate d5 (Compute Incr RegA Zero RegA) ++ Store RegA 1 :> -- A := 4 Load 0 RegA :> -- B := 6 Load 1 RegB :> Nop :> -- Extra NOP -- start Compute CmpGt RegA RegB RegC :> Branch RegC 4 :> Compute CmpGt RegB RegA RegC :> Branch RegC 4 :> Jump 5 :> -- (a > b) Compute Sub RegA RegB RegA :> Jump (-6) :> -- (b > a) Compute Sub RegB RegA RegB :> Jump (-8) :> -- end Store RegA 2 :> Load 2 RegC :> Nil @ When we simulate our system we see that it works. This time again, we need to disregard the first sample, because the initial output of a 'blockRam' is /undefined/. We use the utility function 'Clash.XException.printX' to conveniently filter out the undefinedness and replace it with the string @\"undefined\"@. @ >>> printX $ sampleN @System 34 (system3 prog2) [undefined,0,0,0,0,0,0,4,4,4,4,4,4,4,4,6,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,2] @ This concludes the short introduction to using 'blockRam'. -} {-# LANGUAGE CPP #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE NoGeneralizedNewtypeDeriving #-} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE Safe #-} {-# OPTIONS_HADDOCK show-extensions #-} module Clash.Prelude.BlockRam ( -- * BlockRAM synchronized to the system clock blockRam , blockRamPow2 , blockRamU , blockRam1 , E.ResetStrategy(..) -- ** Read/Write conflict resolution , readNew -- * True dual-port block RAM -- $tdpbram , trueDualPortBlockRam , E.RamOp(..) ) where import Prelude (Enum, Maybe, Eq) import GHC.TypeLits (KnownNat, type (^), type (<=)) import GHC.Stack (HasCallStack, withFrozenCallStack) import qualified Clash.Explicit.BlockRam as E import Clash.Promoted.Nat (SNat) import Clash.Signal import Clash.Sized.Index (Index) import Clash.Sized.Unsigned (Unsigned) import Clash.Sized.Vector (Vec) import Clash.XException (NFDataX) {- $tdpbram A true dual-port block RAM has two fully independent, fully functional access ports: port A and port B. Either port can do both RAM reads and writes. These two ports can even be on distinct clock domains, but the memory itself is shared between the ports. This also makes a true dual-port block RAM suitable as a component in a domain crossing circuit (but it needs additional logic for it to be safe, see e.g. 'Clash.Explicit.Synchronizer.asyncFIFOSynchronizer'). A version with explicit clocks can be found in "Clash.Explicit.BlockRam". -} {- $setup >>> import Clash.Prelude as C >>> import qualified Data.List as L >>> :set -XDataKinds -XRecordWildCards -XTupleSections -XTypeApplications -XFlexibleContexts >>> :set -XDeriveAnyClass -XDeriveGeneric >>> type InstrAddr = Unsigned 8 >>> type MemAddr = Unsigned 5 >>> type Value = Signed 8 >>> :{ data Reg = Zero | PC | RegA | RegB | RegC | RegD | RegE deriving (Eq,Show,Enum,C.Generic,NFDataX) :} >>> :{ data Operator = Add | Sub | Incr | Imm | CmpGt deriving (Eq,Show) :} >>> :{ data Instruction = Compute Operator Reg Reg Reg | Branch Reg Value | Jump Value | Load MemAddr Reg | Store Reg MemAddr | Nop deriving (Eq,Show) :} >>> :{ data MachCode = MachCode { inputX :: Reg , inputY :: Reg , result :: Reg , aluCode :: Operator , ldReg :: Reg , rdAddr :: MemAddr , wrAddrM :: Maybe MemAddr , jmpM :: Maybe Value } :} >>> :{ nullCode = MachCode { inputX = Zero, inputY = Zero, result = Zero, aluCode = Imm , ldReg = Zero, rdAddr = 0, wrAddrM = Nothing , jmpM = Nothing } :} >>> :{ alu Add x y = x + y alu Sub x y = x - y alu Incr x _ = x + 1 alu Imm x _ = x alu CmpGt x y = if x > y then 1 else 0 :} >>> :{ let cpu :: Vec 7 Value -- ^ Register bank -> (Value,Instruction) -- ^ (Memory output, Current instruction) -> ( Vec 7 Value , (MemAddr,Maybe (MemAddr,Value),InstrAddr) ) cpu regbank (memOut,instr) = (regbank',(rdAddr,(,aluOut) <$> wrAddrM,bitCoerce ipntr)) where -- Current instruction pointer ipntr = regbank C.!! PC -- Decoder (MachCode {..}) = case instr of Compute op rx ry res -> nullCode {inputX=rx,inputY=ry,result=res,aluCode=op} Branch cr a -> nullCode {inputX=cr,jmpM=Just a} Jump a -> nullCode {aluCode=Incr,jmpM=Just a} Load a r -> nullCode {ldReg=r,rdAddr=a} Store r a -> nullCode {inputX=r,wrAddrM=Just a} Nop -> nullCode -- ALU regX = regbank C.!! inputX regY = regbank C.!! inputY aluOut = alu aluCode regX regY -- next instruction nextPC = case jmpM of Just a | aluOut /= 0 -> ipntr + a _ -> ipntr + 1 -- update registers regbank' = replace Zero 0 $ replace PC nextPC $ replace result aluOut $ replace ldReg memOut $ regbank :} >>> :{ let dataMem :: HiddenClockResetEnable dom => Signal dom MemAddr -> Signal dom (Maybe (MemAddr,Value)) -> Signal dom Value dataMem rd wrM = mealy dataMemT (C.replicate d32 0) (bundle (rd,wrM)) where dataMemT mem (rd,wrM) = (mem',dout) where dout = mem C.!! rd mem' = case wrM of Just (wr,din) -> replace wr din mem Nothing -> mem :} >>> :{ let system :: (KnownNat n, HiddenClockResetEnable dom ) => Vec n Instruction -> Signal dom Value system instrs = memOut where memOut = dataMem rdAddr dout (rdAddr,dout,ipntr) = mealyB cpu (C.replicate d7 0) (memOut,instr) instr = asyncRom instrs <$> ipntr :} >>> :{ -- Compute GCD of 4 and 6 prog = -- 0 := 4 Compute Incr Zero RegA RegA :> C.replicate d3 (Compute Incr RegA Zero RegA) C.++ Store RegA 0 :> -- 1 := 6 Compute Incr Zero RegA RegA :> C.replicate d5 (Compute Incr RegA Zero RegA) C.++ Store RegA 1 :> -- A := 4 Load 0 RegA :> -- B := 6 Load 1 RegB :> -- start Compute CmpGt RegA RegB RegC :> Branch RegC 4 :> Compute CmpGt RegB RegA RegC :> Branch RegC 4 :> Jump 5 :> -- (a > b) Compute Sub RegA RegB RegA :> Jump (-6) :> -- (b > a) Compute Sub RegB RegA RegB :> Jump (-8) :> -- end Store RegA 2 :> Load 2 RegC :> Nil :} >>> :{ let system2 :: ( KnownNat n , HiddenClockResetEnable dom ) => Vec n Instruction -> Signal dom Value system2 instrs = memOut where memOut = asyncRam d32 rdAddr dout (rdAddr,dout,ipntr) = mealyB cpu (C.replicate d7 0) (memOut,instr) instr = asyncRom instrs <$> ipntr :} >>> :{ let cpu2 :: (Vec 7 Value,Reg) -- ^ (Register bank, Load reg addr) -> (Value,Instruction) -- ^ (Memory output, Current instruction) -> ( (Vec 7 Value,Reg) , (MemAddr, Maybe (MemAddr, Value), InstrAddr) ) cpu2 (regbank,ldRegD) (memOut,instr) = ((regbank', ldRegD'), (rdAddr, (,aluOut) <$> wrAddrM, bitCoerce ipntr)) where -- Current instruction pointer ipntr = regbank C.!! PC -- Decoder (MachCode {..}) = case instr of Compute op rx ry res -> nullCode {inputX=rx,inputY=ry,result=res,aluCode=op} Branch cr a -> nullCode {inputX=cr,jmpM=Just a} Jump a -> nullCode {aluCode=Incr,jmpM=Just a} Load a r -> nullCode {ldReg=r,rdAddr=a} Store r a -> nullCode {inputX=r,wrAddrM=Just a} Nop -> nullCode -- ALU regX = regbank C.!! inputX regY = regbank C.!! inputY aluOut = alu aluCode regX regY -- next instruction nextPC = case jmpM of Just a | aluOut /= 0 -> ipntr + a _ -> ipntr + 1 -- update registers ldRegD' = ldReg -- Delay the ldReg by 1 cycle regbank' = replace Zero 0 $ replace PC nextPC $ replace result aluOut $ replace ldRegD memOut $ regbank :} >>> :{ let system3 :: ( KnownNat n , HiddenClockResetEnable dom ) => Vec n Instruction -> Signal dom Value system3 instrs = memOut where memOut = blockRam (C.replicate d32 0) rdAddr dout (rdAddr,dout,ipntr) = mealyB cpu2 ((C.replicate d7 0),Zero) (memOut,instr) instr = asyncRom instrs <$> ipntr :} >>> :{ prog2 = -- 0 := 4 Compute Incr Zero RegA RegA :> C.replicate d3 (Compute Incr RegA Zero RegA) C.++ Store RegA 0 :> -- 1 := 6 Compute Incr Zero RegA RegA :> C.replicate d5 (Compute Incr RegA Zero RegA) C.++ Store RegA 1 :> -- A := 4 Load 0 RegA :> -- B := 6 Load 1 RegB :> Nop :> -- Extra NOP -- start Compute CmpGt RegA RegB RegC :> Branch RegC 4 :> Compute CmpGt RegB RegA RegC :> Branch RegC 4 :> Jump 5 :> -- (a > b) Compute Sub RegA RegB RegA :> Jump (-6) :> -- (b > a) Compute Sub RegB RegA RegB :> Jump (-8) :> -- end Store RegA 2 :> Load 2 RegC :> Nil :} -} -- | Create a block RAM with space for @n@ elements -- -- * __NB__: Read value is delayed by 1 cycle -- * __NB__: Initial output value is /undefined/, reading it will throw an -- 'Clash.XException.XException' -- -- === See also: -- -- * See "Clash.Prelude.BlockRam#usingrams" for more information on how to use a -- Block RAM. -- * Use the adapter 'readNew' for obtaining write-before-read semantics like this: @'readNew' ('blockRam' inits) rd wrM@. -- * A large 'Vec' for the initial content may be too inefficient, depending -- on how it is constructed. See 'Clash.Prelude.BlockRam.File.blockRamFile' and -- 'Clash.Prelude.BlockRam.Blob.blockRamBlob' for different approaches that -- scale well. -- -- === __Example__ -- @ -- bram40 -- :: 'HiddenClock' dom -- => 'Signal' dom ('Unsigned' 6) -- -> 'Signal' dom (Maybe ('Unsigned' 6, 'Clash.Sized.BitVector.Bit')) -- -> 'Signal' dom 'Clash.Sized.BitVector.Bit' -- bram40 = 'blockRam' ('Clash.Sized.Vector.replicate' d40 1) -- @ blockRam :: ( HasCallStack , HiddenClock dom , HiddenEnable dom , NFDataX a , Enum addr ) => Vec n a -- ^ Initial content of the BRAM, also determines the size, @n@, of the BRAM -- -- __NB__: __MUST__ be a constant -> Signal dom addr -- ^ Read address @r@ -> Signal dom (Maybe (addr, a)) -- ^ (write address @w@, value to write) -> Signal dom a -- ^ Value of the BRAM at address @r@ from the previous clock cycle blockRam = \cnt rd wrM -> withFrozenCallStack (hideEnable (hideClock E.blockRam) cnt rd wrM) {-# INLINE blockRam #-} -- | A version of 'blockRam' that has no default values set. May be cleared to -- an arbitrary state using a reset function. blockRamU :: forall n dom a r addr . ( HasCallStack , HiddenClockResetEnable dom , NFDataX a , Enum addr , 1 <= n ) => E.ResetStrategy r -- ^ Whether to clear BRAM on asserted reset ('Clash.Explicit.BlockRam.ClearOnReset') -- or not ('Clash.Explicit.BlockRam.NoClearOnReset'). The reset needs to be -- asserted for at least /n/ cycles to clear the BRAM. -> SNat n -- ^ Number of elements in BRAM -> (Index n -> a) -- ^ If applicable (see first argument), reset BRAM using this function -> Signal dom addr -- ^ Read address @r@ -> Signal dom (Maybe (addr, a)) -- ^ (write address @w@, value to write) -> Signal dom a -- ^ Value of the BRAM at address @r@ from the previous clock cycle blockRamU = \rstStrategy cnt initF rd wrM -> withFrozenCallStack (hideClockResetEnable E.blockRamU) rstStrategy cnt initF rd wrM {-# INLINE blockRamU #-} -- | A version of 'blockRam' that is initialized with the same value on all -- memory positions blockRam1 :: forall n dom a r addr . ( HasCallStack , HiddenClockResetEnable dom , NFDataX a , Enum addr , 1 <= n ) => E.ResetStrategy r -- ^ Whether to clear BRAM on asserted reset ('Clash.Explicit.BlockRam.ClearOnReset') -- or not ('Clash.Explicit.BlockRam.NoClearOnReset'). The reset needs to be -- asserted for at least /n/ cycles to clear the BRAM. -> SNat n -- ^ Number of elements in BRAM -> a -- ^ Initial content of the BRAM (replicated /n/ times) -> Signal dom addr -- ^ Read address @r@ -> Signal dom (Maybe (addr, a)) -- ^ (write address @w@, value to write) -> Signal dom a -- ^ Value of the BRAM at address @r@ from the previous clock cycle blockRam1 = \rstStrategy cnt initValue rd wrM -> withFrozenCallStack (hideClockResetEnable E.blockRam1) rstStrategy cnt initValue rd wrM {-# INLINE blockRam1 #-} -- | Create a block RAM with space for 2^@n@ elements -- -- * __NB__: Read value is delayed by 1 cycle -- * __NB__: Initial output value is /undefined/, reading it will throw an -- 'Clash.XException.XException' -- -- === See also: -- -- * See "Clash.Prelude.BlockRam#usingrams" for more information on how to use a -- block RAM. -- * Use the adapter 'readNew' for obtaining write-before-read semantics like this: @'readNew' ('blockRamPow2' inits) rd wrM@. -- * A large 'Vec' for the initial content may be too inefficient, depending -- on how it is constructed. See 'Clash.Prelude.BlockRam.File.blockRamFilePow2' -- and 'Clash.Prelude.BlockRam.Blob.blockRamBlobPow2' for different approaches -- that scale well. -- -- === __Example__ -- @ -- bram32 -- :: 'HiddenClock' dom -- => 'Signal' dom ('Unsigned' 5) -- -> 'Signal' dom (Maybe ('Unsigned' 5, 'Clash.Sized.BitVector.Bit')) -- -> 'Signal' dom 'Clash.Sized.BitVector.Bit' -- bram32 = 'blockRamPow2' ('Clash.Sized.Vector.replicate' d32 1) -- @ blockRamPow2 :: ( HasCallStack , HiddenClock dom , HiddenEnable dom , NFDataX a , KnownNat n ) => Vec (2^n) a -- ^ Initial content of the BRAM -- -- __NB__: __MUST__ be a constant. -> Signal dom (Unsigned n) -- ^ Read address @r@ -> Signal dom (Maybe (Unsigned n, a)) -- ^ (write address @w@, value to write) -> Signal dom a -- ^ Value of the @blockRAM@ at address @r@ from the previous clock -- cycle blockRamPow2 = \cnt rd wrM -> withFrozenCallStack (hideEnable (hideClock E.blockRamPow2) cnt rd wrM) {-# INLINE blockRamPow2 #-} -- | Create a read-after-write block RAM from a read-before-write one -- -- >>> :t readNew (blockRam (0 :> 1 :> Nil)) -- readNew (blockRam (0 :> 1 :> Nil)) -- :: ... -- ... -- ... -- ... -- ... => -- Signal dom addr -> Signal dom (Maybe (addr, a)) -> Signal dom a readNew :: ( HiddenClockResetEnable dom , NFDataX a , Eq addr ) => (Signal dom addr -> Signal dom (Maybe (addr, a)) -> Signal dom a) -- ^ The BRAM component -> Signal dom addr -- ^ Read address @r@ -> Signal dom (Maybe (addr, a)) -- ^ (Write address @w@, value to write) -> Signal dom a -- ^ Value of the BRAM at address @r@ from the previous clock cycle readNew = hideClockResetEnable E.readNew {-# INLINE readNew #-} -- | Produces vendor-agnostic HDL that will be inferred as a true dual-port -- block RAM -- -- Any value that is being written on a particular port is also the -- value that will be read on that port, i.e. the same-port read/write behavior -- is: WriteFirst. For mixed-port read/write, when port A writes to the address -- port B reads from, the output of port B is undefined, and vice versa. trueDualPortBlockRam :: #ifdef CLASH_MULTIPLE_HIDDEN forall nAddrs dom1 dom2 a . ( HasCallStack , KnownNat nAddrs , HiddenClock dom1 , HiddenClock dom2 , NFDataX a ) => Signal dom1 (E.RamOp nAddrs a) -- ^ RAM operation for port A -> Signal dom2 (E.RamOp nAddrs a) -- ^ RAM operation for port B -> (Signal dom1 a, Signal dom2 a) -- ^ Outputs data on /next/ cycle. When writing, the data written -- will be echoed. When reading, the read data is returned. trueDualPortBlockRam inA inB = E.trueDualPortBlockRam (hasClock @dom1) (hasClock @dom2) inA inB #else forall nAddrs dom a . ( HasCallStack , KnownNat nAddrs , HiddenClock dom , NFDataX a ) => Signal dom (E.RamOp nAddrs a) -- ^ RAM operation for port A -> Signal dom (E.RamOp nAddrs a) -- ^ RAM operation for port B -> (Signal dom a, Signal dom a) -- ^ Outputs data on /next/ cycle. When writing, the data written -- will be echoed. When reading, the read data is returned. trueDualPortBlockRam inA inB = E.trueDualPortBlockRam hasClock hasClock inA inB #endif