mem :: Int -> Tree -> Bool -- testing 360 combinations of argument values -- pruning with 20/30 rules -- 1 candidates of size 1 -- 0 candidates of size 2 -- 0 candidates of size 3 -- 3 candidates of size 4 -- 0 candidates of size 5 -- 0 candidates of size 6 -- 0 candidates of size 7 -- 31 candidates of size 8 -- 92 candidates of size 9 -- 0 candidates of size 10 -- 304 candidates of size 11 -- 151 candidates of size 12 -- tested 497 candidates mem x Leaf = False mem x (Node t1 y t2) = mem x t1 || (mem x t2 || x == y) mem :: Int -> Tree -> Bool -- testing 360 combinations of argument values -- pruning with 1/2 rules -- 2 candidates of size 1 -- 1 candidates of size 2 -- 0 candidates of size 3 -- 0 candidates of size 4 -- 0 candidates of size 5 -- 0 candidates of size 6 -- 6 candidates of size 7 -- 24 candidates of size 8 -- 0 candidates of size 9 -- 192 candidates of size 10 -- 0 candidates of size 11 -- 384 candidates of size 12 -- tested 371 candidates mem x Leaf = False mem x (Node t1 y t2) = case x `compare` y of LT -> mem x t1 EQ -> True GT -> mem x t2 insert :: Int -> Tree -> Tree -- testing 360 combinations of argument values -- pruning with 2/3 rules -- 2 candidates of size 1 -- 2 candidates of size 2 -- 0 candidates of size 3 -- 4 candidates of size 4 -- 21 candidates of size 5 -- 0 candidates of size 6 -- 74 candidates of size 7 -- 335 candidates of size 8 -- 32 candidates of size 9 -- 1504 candidates of size 10 -- 6708 candidates of size 11 -- 1760 candidates of size 12 -- tested 10442 candidates cannot conjure before :: Int -> Tree -> Tree -- pruning with 5/6 rules -- 2 candidates of size 1 -- 2 candidates of size 2 -- 0 candidates of size 3 -- 4 candidates of size 4 -- 21 candidates of size 5 -- 0 candidates of size 6 -- 86 candidates of size 7 -- 239 candidates of size 8 -- 104 candidates of size 9 -- 1558 candidates of size 10 -- 3555 candidates of size 11 -- 4028 candidates of size 12 -- tested 9599 candidates cannot conjure before :: Int -> Tree -> Tree -- pruning with 2/4 rules -- 2 candidates of size 1 -- 2 candidates of size 2 -- 0 candidates of size 3 -- 4 candidates of size 4 -- 21 candidates of size 5 -- 0 candidates of size 6 -- 68 candidates of size 7 -- 287 candidates of size 8 -- 32 candidates of size 9 -- 1216 candidates of size 10 -- 5103 candidates of size 11 -- 1472 candidates of size 12 -- tested 8207 candidates cannot conjure beyond :: Int -> Tree -> Tree -- pruning with 2/4 rules -- 2 candidates of size 1 -- 2 candidates of size 2 -- 0 candidates of size 3 -- 4 candidates of size 4 -- 21 candidates of size 5 -- 0 candidates of size 6 -- 68 candidates of size 7 -- 287 candidates of size 8 -- 32 candidates of size 9 -- 1216 candidates of size 10 -- 5103 candidates of size 11 -- 1472 candidates of size 12 -- tested 8207 candidates cannot conjure union :: Tree -> Tree -> Tree -- testing 360 combinations of argument values -- pruning with 6/8 rules -- 3 candidates of size 1 -- 12 candidates of size 2 -- 32 candidates of size 3 -- 58 candidates of size 4 -- 434 candidates of size 5 -- 922 candidates of size 6 -- 3088 candidates of size 7 -- 14022 candidates of size 8 -- tested 18571 candidates cannot conjure