module Combinatorics.CardPairs where
import qualified Combinatorics as Comb
import Data.Array (Array, (!), array, )
import Data.Ix (Ix, )
import qualified Data.List.HT as ListHT
import qualified Control.Monad.Trans.State as State
import Control.Monad (liftM, liftM2, liftM3, replicateM, )
import Data.Ratio ((%), )
type CardSet a = [(a, Int)]
data Card = Other | Queen | King
deriving (Eq, Ord, Enum, Show)
charFromCard :: Card -> Char
charFromCard card =
case card of
Other -> ' '
Queen -> 'q'
King -> 'k'
removeEach :: State.StateT (CardSet a) [] a
removeEach =
State.StateT $
map (\(pre,(x,n),post) ->
(x, pre ++
let m = pred n
in (if m>0 then ((x,m):) else id)
post)) .
ListHT.splitEverywhere
normalizeSet :: CardSet a -> CardSet a
normalizeSet = filter ((>0) . snd)
allPossibilities :: CardSet a -> [[a]]
allPossibilities set =
State.evalStateT
(replicateM (sum (map snd set)) removeEach)
(normalizeSet set)
allPossibilitiesSmall :: [[Card]]
allPossibilitiesSmall =
allPossibilities [(Other, 4), (Queen, 2), (King, 2)]
allPossibilitiesMedium :: [[Card]]
allPossibilitiesMedium =
allPossibilities [(Other, 4), (Queen, 4), (King, 4)]
allPossibilitiesSkat :: [[Card]]
allPossibilitiesSkat =
allPossibilities [(Other, 24), (Queen, 4), (King, 4)]
adjacentCouple :: [Card] -> Bool
adjacentCouple =
or .
ListHT.mapAdjacent
(\x y -> (x==Queen && y==King) || (x==King && y==Queen))
adjacentCouplesSmall :: [[Card]]
adjacentCouplesSmall =
filter adjacentCouple $
allPossibilities [(Other, 4), (Queen, 2), (King, 2)]
exampleOutput :: IO ()
exampleOutput =
mapM_ (print . map charFromCard) allPossibilitiesSmall
sample :: (a -> b) -> [a] -> [(a,b)]
sample f = map (\x -> (x, f x))
data CardCount i =
CardCount {otherCount, queenCount, kingCount :: i}
deriving (Eq, Ord, Ix, Show)
possibilitiesCardsNaive ::
CardCount Int -> Integer
possibilitiesCardsNaive (CardCount no nq nk) =
fromIntegral $ length $
filter adjacentCouple $
allPossibilities [(Other,no), (Queen,nq), (King,nk)]
possibilitiesCardsDynamic ::
CardCount Int -> Array (CardCount Int) Integer
possibilitiesCardsDynamic (CardCount mo mq mk) =
let border =
liftM3 CardCount [0,1] [0..mq] [0..mk] ++
liftM3 CardCount [0..mo] [0,1] [0..mk] ++
liftM3 CardCount [0..mo] [0..mq] [0,1]
p =
array (CardCount 0 0 0, CardCount mo mq mk) $
sample possibilitiesCardsNaive border ++
sample
(\(CardCount no nq nk) ->
p!(CardCount (no1) nq nk) +
p!(CardCount (no1) (nq1) nk) +
p!(CardCount (no1) nq (nk1)) +
p!(CardCount no (nq2) nk) +
p!(CardCount no nq (nk2)) +
2 * Comb.multinomial [fromIntegral no, fromIntegral nq1, fromIntegral nk1])
(liftM3 CardCount [2..mo] [2..mq] [2..mk])
in p
sumCard :: Num i => CardCount i -> i
sumCard (CardCount x y z) = x+y+z
possibilitiesCardsBorderNaive ::
CardCount Int -> CardCount Integer
possibilitiesCardsBorderNaive (CardCount no nq nk) =
foldl (\n (card:_) ->
case card of
Other -> n{otherCount = 1 + otherCount n}
Queen -> n{queenCount = 1 + queenCount n}
King -> n{kingCount = 1 + kingCount n})
(CardCount 0 0 0) $
filter adjacentCouple $
allPossibilities [(Other,no), (Queen,nq), (King,nk)]
possibilitiesCardsBorderDynamic ::
CardCount Int -> Array (CardCount Int) (CardCount Integer)
possibilitiesCardsBorderDynamic (CardCount mo mq mk) =
let p =
array (CardCount 0 0 0, CardCount mo mq mk) $
liftM (\ nq -> (CardCount 0 nq 0, CardCount 0 0 0)) [1..mq] ++
liftM (\ nk -> (CardCount 0 0 nk, CardCount 0 0 0)) [1..mk] ++
liftM2 (\ nq nk -> ((CardCount 0 nq nk),
let s = fromIntegral $ nq+nk1
in CardCount 0
(Comb.binomial s (fromIntegral nk))
(Comb.binomial s (fromIntegral nq))))
[1..mq] [1..mk] ++
liftM2 (\ no nk -> (CardCount no 0 nk, CardCount 0 0 0)) [0..mo] [0..mk] ++
liftM2 (\ no nq -> (CardCount no nq 0, CardCount 0 0 0)) [0..mo] [0..mq] ++
sample
(\(CardCount no nq nk) ->
let allP = Comb.multinomial [fromIntegral no, fromIntegral nq1, fromIntegral nk1]
in CardCount
(
sumCard (p ! CardCount (no1) nq nk))
(
otherCount (p ! CardCount no (nq1) nk) +
queenCount (p ! CardCount no (nq1) nk) +
allP)
(
otherCount (p ! CardCount no nq (nk1)) +
kingCount (p ! CardCount no nq (nk1)) +
allP))
(liftM3 CardCount [1..mo] [1..mq] [1..mk])
in p
possibilitiesCardsBorder2Dynamic ::
CardCount Int -> Array (CardCount Int) (CardCount Integer)
possibilitiesCardsBorder2Dynamic (CardCount mo mq mk) =
let p =
array (CardCount 0 0 0, CardCount mo mq mk) $
flip sample (liftM3 CardCount [0..mo] [0..mq] [0..mk]) $
\(CardCount no nq nk) ->
let allP = Comb.multinomial [fromIntegral no, fromIntegral nq1, fromIntegral nk1]
test0 n f g =
if n==0
then 0
else g $ p ! f (n1)
in CardCount
(test0 no (\io -> CardCount io nq nk) $
sumCard)
(test0 nq (\iq -> CardCount no iq nk) $ \pc ->
otherCount pc +
queenCount pc +
allP)
(test0 nk (\ik -> CardCount no nq ik) $ \pc ->
otherCount pc +
kingCount pc +
allP)
in p
testCardsBorderDynamic ::
(CardCount Integer, CardCount Integer, CardCount Integer)
testCardsBorderDynamic =
(possibilitiesCardsBorderNaive (CardCount 2 3 5),
possibilitiesCardsBorderDynamic (CardCount 5 5 5) ! (CardCount 2 3 5),
possibilitiesCardsBorder2Dynamic (CardCount 5 5 5) ! (CardCount 2 3 5))
numberOfAllPossibilities :: CardCount Int -> Integer
numberOfAllPossibilities (CardCount no nq nk) =
Comb.multinomial [fromIntegral no, fromIntegral nq, fromIntegral nk]
cardSetSizeSkat :: CardCount Int
cardSetSizeSkat = CardCount 24 4 4
numberOfPossibilitiesSkat :: Integer
numberOfPossibilitiesSkat =
sumCard $ possibilitiesCardsBorder2Dynamic cardSetSizeSkat ! cardSetSizeSkat
probabilitySkat :: Double
probabilitySkat =
fromRational $
numberOfPossibilitiesSkat % numberOfAllPossibilities cardSetSizeSkat
cardSetSizeRummy :: CardCount Int
cardSetSizeRummy = CardCount 44 4 4
numberOfPossibilitiesRummy :: Integer
numberOfPossibilitiesRummy =
sumCard $ possibilitiesCardsBorder2Dynamic cardSetSizeRummy ! cardSetSizeRummy
probabilityRummy :: Double
probabilityRummy =
fromRational $
numberOfPossibilitiesRummy % numberOfAllPossibilities cardSetSizeRummy
cardSetSizeRummyJK :: CardCount Int
cardSetSizeRummyJK = CardCount 40 4 8
numberOfPossibilitiesRummyJK :: Integer
numberOfPossibilitiesRummyJK =
sumCard $ possibilitiesCardsBorder2Dynamic cardSetSizeRummyJK ! cardSetSizeRummyJK
probabilityRummyJK :: Double
probabilityRummyJK =
fromRational $
numberOfPossibilitiesRummyJK % numberOfAllPossibilities cardSetSizeRummyJK