module Data.Constraint.Nat
( Min, Max, Lcm, Gcd, Divides, Div, Mod
, plusNat, timesNat, powNat, minNat, maxNat, gcdNat, lcmNat, divNat, modNat
, plusZero, timesZero, timesOne, powZero, powOne, maxZero, minZero, gcdZero, gcdOne, lcmZero, lcmOne
, plusAssociates, timesAssociates, minAssociates, maxAssociates, gcdAssociates, lcmAssociates
, plusCommutes, timesCommutes, minCommutes, maxCommutes, gcdCommutes, lcmCommutes
, plusDistributesOverTimes, timesDistributesOverPow, timesDistributesOverGcd, timesDistributesOverLcm
, minDistributesOverPlus, minDistributesOverTimes, minDistributesOverPow1, minDistributesOverPow2, minDistributesOverMax
, maxDistributesOverPlus, maxDistributesOverTimes, maxDistributesOverPow1, maxDistributesOverPow2, maxDistributesOverMin
, gcdDistributesOverLcm, lcmDistributesOverGcd
, minIsIdempotent, maxIsIdempotent, lcmIsIdempotent, gcdIsIdempotent
, plusIsCancellative, timesIsCancellative
, dividesPlus, dividesTimes, dividesMin, dividesMax, dividesPow, dividesGcd, dividesLcm
, plusMonotone1, plusMonotone2
, timesMonotone1, timesMonotone2
, powMonotone1, powMonotone2
, minMonotone1, minMonotone2
, maxMonotone1, maxMonotone2
, divMonotone1, divMonotone2
, euclideanNat
, plusMod, timesMod
, modBound
, dividesDef
, timesDiv
, eqLe, leEq, leId, leTrans
, leZero, zeroLe
) where
import Data.Constraint
import Data.Proxy
import GHC.TypeLits
import Unsafe.Coerce
type family Min (m::Nat) (n::Nat) :: Nat where
Min m m = m
type family Max (m::Nat) (n::Nat) :: Nat where
Max m m = m
#if !(MIN_VERSION_base(4,11,0))
type family Div (m::Nat) (n::Nat) :: Nat where
Div m 1 = m
type family Mod (m::Nat) (n::Nat) :: Nat where
Mod 0 m = 0
#endif
type family Gcd (m::Nat) (n::Nat) :: Nat where
Gcd m m = m
type family Lcm (m::Nat) (n::Nat) :: Nat where
Lcm m m = m
type Divides n m = n ~ Gcd n m
newtype Magic n = Magic (KnownNat n => Dict (KnownNat n))
magic :: forall n m o. (Integer -> Integer -> Integer) -> (KnownNat n, KnownNat m) :- KnownNat o
magic f = Sub $ unsafeCoerce (Magic Dict) (natVal (Proxy :: Proxy n) `f` natVal (Proxy :: Proxy m))
axiom :: forall a b. Dict (a ~ b)
axiom = unsafeCoerce (Dict :: Dict (a ~ a))
axiomLe :: forall a b. Dict (a <= b)
axiomLe = axiom
eqLe :: (a ~ b) :- (a <= b)
eqLe = Sub Dict
dividesGcd :: forall a b c. (Divides a b, Divides a c) :- Divides a (Gcd b c)
dividesGcd = Sub axiom
dividesLcm :: forall a b c. (Divides a c, Divides b c) :- Divides (Lcm a b) c
dividesLcm = Sub axiom
gcdCommutes :: forall a b. Dict (Gcd a b ~ Gcd b a)
gcdCommutes = axiom
lcmCommutes :: forall a b. Dict (Lcm a b ~ Lcm b a)
lcmCommutes = axiom
gcdZero :: forall a. Dict (Gcd 0 a ~ a)
gcdZero = axiom
gcdOne :: forall a. Dict (Gcd 1 a ~ 1)
gcdOne = axiom
lcmZero :: forall a. Dict (Lcm 0 a ~ 0)
lcmZero = axiom
lcmOne :: forall a. Dict (Lcm 1 a ~ a)
lcmOne = axiom
gcdNat :: forall n m. (KnownNat n, KnownNat m) :- KnownNat (Gcd n m)
gcdNat = magic gcd
lcmNat :: forall n m. (KnownNat n, KnownNat m) :- KnownNat (Lcm n m)
lcmNat = magic lcm
plusNat :: forall n m. (KnownNat n, KnownNat m) :- KnownNat (n + m)
plusNat = magic (+)
minNat :: forall n m. (KnownNat n, KnownNat m) :- KnownNat (Min n m)
minNat = magic min
maxNat :: forall n m. (KnownNat n, KnownNat m) :- KnownNat (Max n m)
maxNat = magic max
timesNat :: forall n m. (KnownNat n, KnownNat m) :- KnownNat (n * m)
timesNat = magic (*)
powNat :: forall n m. (KnownNat n, KnownNat m) :- KnownNat (n ^ m)
powNat = magic (^)
divNat :: forall n m. (KnownNat n, KnownNat m, 1 <= m) :- KnownNat (Div n m)
divNat = Sub $ case magic @n @m div of Sub r -> r
modNat :: forall n m. (KnownNat n, KnownNat m, 1 <= m) :- KnownNat (Mod n m)
modNat = Sub $ case magic @n @m mod of Sub r -> r
plusZero :: forall n. Dict ((n + 0) ~ n)
plusZero = Dict
timesZero :: forall n. Dict ((n * 0) ~ 0)
timesZero = Dict
timesOne :: forall n. Dict ((n * 1) ~ n)
timesOne = Dict
minZero :: forall n. Dict (Min n 0 ~ 0)
minZero = axiom
maxZero :: forall n. Dict (Max n 0 ~ n)
maxZero = axiom
powZero :: forall n. Dict ((n ^ 0) ~ 1)
powZero = Dict
leZero :: forall a. (a <= 0) :- (a ~ 0)
leZero = Sub axiom
zeroLe :: forall a. Dict (0 <= a)
zeroLe = Dict
plusMonotone1 :: forall a b c. (a <= b) :- (a + c <= b + c)
plusMonotone1 = Sub axiom
plusMonotone2 :: forall a b c. (b <= c) :- (a + b <= a + c)
plusMonotone2 = Sub axiom
powMonotone1 :: forall a b c. (a <= b) :- ((a^c) <= (b^c))
powMonotone1 = Sub axiom
powMonotone2 :: forall a b c. (b <= c) :- ((a^b) <= (a^c))
powMonotone2 = Sub axiom
divMonotone1 :: forall a b c. (a <= b) :- (Div a c <= Div b c)
divMonotone1 = Sub axiom
divMonotone2 :: forall a b c. (b <= c) :- (Div a c <= Div a b)
divMonotone2 = Sub axiom
timesMonotone1 :: forall a b c. (a <= b) :- (a * c <= b * c)
timesMonotone1 = Sub axiom
timesMonotone2 :: forall a b c. (b <= c) :- (a * b <= a * c)
timesMonotone2 = Sub axiom
minMonotone1 :: forall a b c. (a <= b) :- (Min a c <= Min b c)
minMonotone1 = Sub axiom
minMonotone2 :: forall a b c. (b <= c) :- (Min a b <= Min a c)
minMonotone2 = Sub axiom
maxMonotone1 :: forall a b c. (a <= b) :- (Max a c <= Max b c)
maxMonotone1 = Sub axiom
maxMonotone2 :: forall a b c. (b <= c) :- (Max a b <= Max a c)
maxMonotone2 = Sub axiom
powOne :: forall n. Dict ((n ^ 1) ~ n)
powOne = axiom
plusMod :: forall a b c. (1 <= c) :- (Mod (a + b) c ~ Mod (Mod a c + Mod b c) c)
plusMod = Sub axiom
timesMod :: forall a b c. (1 <= c) :- (Mod (a * b) c ~ Mod (Mod a c * Mod b c) c)
timesMod = Sub axiom
modBound :: forall m n. (1 <= n) :- (Mod m n <= n)
modBound = Sub axiom
euclideanNat :: (1 <= c) :- (a ~ (c * Div a c + Mod a c))
euclideanNat = Sub axiom
plusCommutes :: forall n m. Dict ((m + n) ~ (n + m))
plusCommutes = axiom
timesCommutes :: forall n m. Dict ((m * n) ~ (n * m))
timesCommutes = axiom
minCommutes :: forall n m. Dict (Min m n ~ Min n m)
minCommutes = axiom
maxCommutes :: forall n m. Dict (Max m n ~ Max n m)
maxCommutes = axiom
plusAssociates :: forall m n o. Dict (((m + n) + o) ~ (m + (n + o)))
plusAssociates = axiom
timesAssociates :: forall m n o. Dict (((m * n) * o) ~ (m * (n * o)))
timesAssociates = axiom
minAssociates :: forall m n o. Dict (Min (Min m n) o ~ Min m (Min n o))
minAssociates = axiom
maxAssociates :: forall m n o. Dict (Max (Max m n) o ~ Max m (Max n o))
maxAssociates = axiom
gcdAssociates :: forall a b c. Dict (Gcd (Gcd a b) c ~ Gcd a (Gcd b c))
gcdAssociates = axiom
lcmAssociates :: forall a b c. Dict (Lcm (Lcm a b) c ~ Lcm a (Lcm b c))
lcmAssociates = axiom
minIsIdempotent :: forall n. Dict (Min n n ~ n)
minIsIdempotent = Dict
maxIsIdempotent :: forall n. Dict (Max n n ~ n)
maxIsIdempotent = Dict
gcdIsIdempotent :: forall n. Dict (Gcd n n ~ n)
gcdIsIdempotent = Dict
lcmIsIdempotent :: forall n. Dict (Lcm n n ~ n)
lcmIsIdempotent = Dict
minDistributesOverPlus :: forall n m o. Dict ((n + Min m o) ~ Min (n + m) (n + o))
minDistributesOverPlus = axiom
minDistributesOverTimes :: forall n m o. Dict ((n * Min m o) ~ Min (n * m) (n * o))
minDistributesOverTimes = axiom
minDistributesOverPow1 :: forall n m o. Dict ((Min n m ^ o) ~ Min (n ^ o) (m ^ o))
minDistributesOverPow1 = axiom
minDistributesOverPow2 :: forall n m o. Dict ((n ^ Min m o) ~ Min (n ^ m) (n ^ o))
minDistributesOverPow2 = axiom
minDistributesOverMax :: forall n m o. Dict (Max n (Min m o) ~ Min (Max n m) (Max n o))
minDistributesOverMax = axiom
maxDistributesOverPlus :: forall n m o. Dict ((n + Max m o) ~ Max (n + m) (n + o))
maxDistributesOverPlus = axiom
maxDistributesOverTimes :: forall n m o. Dict ((n * Max m o) ~ Max (n * m) (n * o))
maxDistributesOverTimes = axiom
maxDistributesOverPow1 :: forall n m o. Dict ((Max n m ^ o) ~ Max (n ^ o) (m ^ o))
maxDistributesOverPow1 = axiom
maxDistributesOverPow2 :: forall n m o. Dict ((n ^ Max m o) ~ Max (n ^ m) (n ^ o))
maxDistributesOverPow2 = axiom
maxDistributesOverMin :: forall n m o. Dict (Min n (Max m o) ~ Max (Min n m) (Min n o))
maxDistributesOverMin = axiom
plusDistributesOverTimes :: forall n m o. Dict ((n * (m + o)) ~ (n * m + n * o))
plusDistributesOverTimes = axiom
timesDistributesOverPow :: forall n m o. Dict ((n ^ (m + o)) ~ (n ^ m * n ^ o))
timesDistributesOverPow = axiom
timesDistributesOverGcd :: forall n m o. Dict ((n * Gcd m o) ~ Gcd (n * m) (n * o))
timesDistributesOverGcd = axiom
timesDistributesOverLcm :: forall n m o. Dict ((n * Lcm m o) ~ Lcm (n * m) (n * o))
timesDistributesOverLcm = axiom
plusIsCancellative :: forall n m o. ((n + m) ~ (n + o)) :- (m ~ o)
plusIsCancellative = Sub axiom
timesIsCancellative :: forall n m o. (1 <= n, (n * m) ~ (n * o)) :- (m ~ o)
timesIsCancellative = Sub axiom
gcdDistributesOverLcm :: forall a b c. Dict (Gcd (Lcm a b) c ~ Lcm (Gcd a c) (Gcd b c))
gcdDistributesOverLcm = axiom
lcmDistributesOverGcd :: forall a b c. Dict (Lcm (Gcd a b) c ~ Gcd (Lcm a c) (Lcm b c))
lcmDistributesOverGcd = axiom
dividesPlus :: (Divides a b, Divides a c) :- Divides a (b + c)
dividesPlus = Sub axiom
dividesTimes :: (Divides a b, Divides a c) :- Divides a (b * c)
dividesTimes = Sub axiom
dividesMin :: (Divides a b, Divides a c) :- Divides a (Min b c)
dividesMin = Sub axiom
dividesMax :: (Divides a b, Divides a c) :- Divides a (Max b c)
dividesMax = Sub axiom
dividesDef :: forall a b. Divides a b :- ((a * Div b a) ~ a)
dividesDef = Sub axiom
dividesPow :: (1 <= n, Divides a b) :- Divides a (b^n)
dividesPow = Sub axiom
timesDiv :: forall a b. Dict ((a * Div b a) <= a)
timesDiv = axiom
leId :: forall a. Dict (a <= a)
leId = Dict
leEq :: forall a b. (a <= b, b <= a) :- (a ~ b)
leEq = Sub axiom
leTrans :: forall a b c. (b <= c, a <= b) :- (a <= c)
leTrans = Sub (axiomLe @a @c)