module Data.Constraint.Symbol
( type (++)
, type Take
, type Drop
, type Length
, appendSymbol
, appendUnit1
, appendUnit2
, appendAssociates
, takeSymbol
, dropSymbol
, takeAppendDrop
, lengthSymbol
, takeLength
, take0
, takeEmpty
, dropLength
, drop0
, dropEmpty
, lengthTake
, lengthDrop
, dropDrop
, takeTake
) where
import Data.Constraint
import Data.Constraint.Nat
import Data.Proxy
import GHC.TypeLits
import Unsafe.Coerce
type family (++) :: Symbol -> Symbol -> Symbol where
type family Take :: Nat -> Symbol -> Symbol where
type family Drop :: Nat -> Symbol -> Symbol where
type family Length :: Symbol -> Nat where
newtype Magic n = Magic (KnownSymbol n => Dict (KnownSymbol n))
magicNSS :: forall n m o. (Int -> String -> String) -> (KnownNat n, KnownSymbol m) :- KnownSymbol o
magicNSS f = Sub $ unsafeCoerce (Magic Dict) (fromIntegral (natVal (Proxy :: Proxy n)) `f` symbolVal (Proxy :: Proxy m))
magicSSS :: forall n m o. (String -> String -> String) -> (KnownSymbol n, KnownSymbol m) :- KnownSymbol o
magicSSS f = Sub $ unsafeCoerce (Magic Dict) (symbolVal (Proxy :: Proxy n) `f` symbolVal (Proxy :: Proxy m))
magicSN :: forall a n. (String -> Int) -> KnownSymbol a :- KnownNat n
magicSN f = Sub $ unsafeCoerce (Magic Dict) (toInteger (f (symbolVal (Proxy :: Proxy a))))
axiom :: forall a b. Dict (a ~ b)
axiom = unsafeCoerce (Dict :: Dict (a ~ a))
appendSymbol :: (KnownSymbol a, KnownSymbol b) :- KnownSymbol (a ++ b)
appendSymbol = magicSSS (++)
appendUnit1 :: forall a. Dict (("" ++ a) ~ a)
appendUnit1 = axiom
appendUnit2 :: forall a. Dict ((a ++ "") ~ a)
appendUnit2 = axiom
appendAssociates :: forall a b c. Dict (((a ++ b) ++ c) ~ (a ++ (b ++ c)))
appendAssociates = axiom
takeSymbol :: forall n a. (KnownNat n, KnownSymbol a) :- KnownSymbol (Take n a)
takeSymbol = magicNSS take
dropSymbol :: forall n a. (KnownNat n, KnownSymbol a) :- KnownSymbol (Drop n a)
dropSymbol = magicNSS drop
takeAppendDrop :: forall n a. Dict (Take n a ++ Drop n a ~ a)
takeAppendDrop = axiom
lengthSymbol :: forall a. KnownSymbol a :- KnownNat (Length a)
lengthSymbol = magicSN length
takeLength :: forall n a. (Length a <= n) :- (Take n a ~ a)
takeLength = Sub axiom
take0 :: forall a. Dict (Take 0 a ~ "")
take0 = axiom
takeEmpty :: forall n. Dict (Take n "" ~ "")
takeEmpty = axiom
dropLength :: forall n a. (Length a <= n) :- (Drop n a ~ "")
dropLength = Sub axiom
drop0 :: forall a. Dict (Drop 0 a ~ a)
drop0 = axiom
dropEmpty :: forall n. Dict (Drop n "" ~ "")
dropEmpty = axiom
lengthTake :: forall n a. Dict (Length (Take n a) <= n)
lengthTake = axiom
lengthDrop :: forall n a. Dict (Length a <= (Length (Drop n a) + n))
lengthDrop = axiom
dropDrop :: forall n m a. Dict (Drop n (Drop m a) ~ Drop (n + m) a)
dropDrop = axiom
takeTake :: forall n m a. Dict (Take n (Take m a) ~ Take (Min n m) a)
takeTake = axiom