module Data.Cfg.Bnf.Parser(parse) where
import qualified Data.Map as M
import Data.Cfg.Bnf.Scanner(scan)
import Data.Cfg.Bnf.Syntax
import Data.Cfg.Bnf.Token
import Data.Cfg.Cfg(Production, V(..), Vs)
import qualified Data.Array as Happy_Data_Array
import qualified GHC.Exts as Happy_GHC_Exts
import Control.Applicative(Applicative(..))
newtype HappyAbsSyn = HappyAbsSyn HappyAny
#if __GLASGOW_HASKELL__ >= 607
type HappyAny = Happy_GHC_Exts.Any
#else
type HappyAny = forall a . a
#endif
happyIn4 :: (Grammar String String) -> (HappyAbsSyn )
happyIn4 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut4 :: (HappyAbsSyn ) -> (Grammar String String)
happyOut4 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn5 :: ([Production String String]) -> (HappyAbsSyn )
happyIn5 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut5 :: (HappyAbsSyn ) -> ([Production String String])
happyOut5 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn6 :: ([Production String String]) -> (HappyAbsSyn )
happyIn6 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut6 :: (HappyAbsSyn ) -> ([Production String String])
happyOut6 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn7 :: ([Vs String String]) -> (HappyAbsSyn )
happyIn7 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut7 :: (HappyAbsSyn ) -> ([Vs String String])
happyOut7 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn8 :: ([Vs String String]) -> (HappyAbsSyn )
happyIn8 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut8 :: (HappyAbsSyn ) -> ([Vs String String])
happyOut8 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn9 :: (Vs String String) -> (HappyAbsSyn )
happyIn9 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut9 :: (HappyAbsSyn ) -> (Vs String String)
happyOut9 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn10 :: (Vs String String) -> (HappyAbsSyn )
happyIn10 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut10 :: (HappyAbsSyn ) -> (Vs String String)
happyOut10 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn11 :: (V String String) -> (HappyAbsSyn )
happyIn11 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut11 :: (HappyAbsSyn ) -> (V String String)
happyOut11 x = Happy_GHC_Exts.unsafeCoerce# x
happyInTok :: (Token) -> (HappyAbsSyn )
happyInTok x = Happy_GHC_Exts.unsafeCoerce# x
happyOutTok :: (HappyAbsSyn ) -> (Token)
happyOutTok x = Happy_GHC_Exts.unsafeCoerce# x
happyActOffsets :: HappyAddr
happyActOffsets = HappyA# "\x11\x00\x11\x00\x11\x00\x00\x00\x10\x00\x0c\x00\x00\x00\x00\x00\x0f\x00\x0e\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#
happyGotoOffsets :: HappyAddr
happyGotoOffsets = HappyA# "\x05\x00\x0d\x00\x09\x00\x00\x00\x00\x00\x00\x00\xfe\xff\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x00\x00\x00\x00"#
happyDefActions :: HappyAddr
happyDefActions = HappyA# "\x00\x00\x00\x00\xfe\xff\xfc\xff\x00\x00\x00\x00\xf5\xff\xfd\xff\x00\x00\xfa\xff\xf8\xff\xf7\xff\xf6\xff\xf3\xff\xf4\xff\xf5\xff\xfb\xff\xf9\xff"#
happyCheck :: HappyAddr
happyCheck = HappyA# "\xff\xff\x03\x00\x04\x00\x05\x00\x06\x00\x00\x00\x01\x00\x02\x00\x02\x00\x07\x00\x04\x00\x02\x00\x05\x00\x06\x00\x01\x00\x02\x00\x01\x00\x03\x00\x06\x00\x02\x00\xff\xff\x05\x00\xff\xff\xff\xff\xff\xff\xff\xff"#
happyTable :: HappyAddr
happyTable = HappyA# "\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x05\x00\x02\x00\x03\x00\x0e\x00\x0c\x00\x0f\x00\x07\x00\x11\x00\x0b\x00\x02\x00\x03\x00\x11\x00\x10\x00\xff\xff\x05\x00\x00\x00\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00"#
happyReduceArr = Happy_Data_Array.array (1, 12) [
(1 , happyReduce_1),
(2 , happyReduce_2),
(3 , happyReduce_3),
(4 , happyReduce_4),
(5 , happyReduce_5),
(6 , happyReduce_6),
(7 , happyReduce_7),
(8 , happyReduce_8),
(9 , happyReduce_9),
(10 , happyReduce_10),
(11 , happyReduce_11),
(12 , happyReduce_12)
]
happy_n_terms = 7 :: Int
happy_n_nonterms = 8 :: Int
happyReduce_1 = happySpecReduce_1 0# happyReduction_1
happyReduction_1 happy_x_1
= case happyOut5 happy_x_1 of { happy_var_1 ->
happyIn4
(Grammar happy_var_1
)}
happyReduce_2 = happySpecReduce_2 1# happyReduction_2
happyReduction_2 happy_x_2
happy_x_1
= case happyOut5 happy_x_1 of { happy_var_1 ->
case happyOut6 happy_x_2 of { happy_var_2 ->
happyIn5
(happy_var_1 ++ happy_var_2
)}}
happyReduce_3 = happySpecReduce_1 1# happyReduction_3
happyReduction_3 happy_x_1
= case happyOut6 happy_x_1 of { happy_var_1 ->
happyIn5
(happy_var_1
)}
happyReduce_4 = happyReduce 4# 2# happyReduction_4
happyReduction_4 (happy_x_4 `HappyStk`
happy_x_3 `HappyStk`
happy_x_2 `HappyStk`
happy_x_1 `HappyStk`
happyRest)
= case happyOutTok happy_x_1 of { (Token LOWER_IDENTIFIER happy_var_1) ->
case happyOut7 happy_x_3 of { happy_var_3 ->
happyIn6
([ (happy_var_1, alt) | alt <- happy_var_3 ]
) `HappyStk` happyRest}}
happyReduce_5 = happySpecReduce_1 3# happyReduction_5
happyReduction_5 happy_x_1
= case happyOut8 happy_x_1 of { happy_var_1 ->
happyIn7
(happy_var_1
)}
happyReduce_6 = happySpecReduce_3 4# happyReduction_6
happyReduction_6 happy_x_3
happy_x_2
happy_x_1
= case happyOut8 happy_x_1 of { happy_var_1 ->
case happyOut9 happy_x_3 of { happy_var_3 ->
happyIn8
(happy_var_1 ++ [ happy_var_3 ]
)}}
happyReduce_7 = happySpecReduce_1 4# happyReduction_7
happyReduction_7 happy_x_1
= case happyOut9 happy_x_1 of { happy_var_1 ->
happyIn8
([ happy_var_1 ]
)}
happyReduce_8 = happySpecReduce_1 5# happyReduction_8
happyReduction_8 happy_x_1
= case happyOut10 happy_x_1 of { happy_var_1 ->
happyIn9
(happy_var_1
)}
happyReduce_9 = happySpecReduce_2 6# happyReduction_9
happyReduction_9 happy_x_2
happy_x_1
= case happyOut10 happy_x_1 of { happy_var_1 ->
case happyOut11 happy_x_2 of { happy_var_2 ->
happyIn10
(happy_var_1 ++ [ happy_var_2 ]
)}}
happyReduce_10 = happySpecReduce_0 6# happyReduction_10
happyReduction_10 = happyIn10
([]
)
happyReduce_11 = happySpecReduce_1 7# happyReduction_11
happyReduction_11 happy_x_1
= case happyOutTok happy_x_1 of { (Token UPPER_IDENTIFIER happy_var_1) ->
happyIn11
(T happy_var_1
)}
happyReduce_12 = happySpecReduce_1 7# happyReduction_12
happyReduction_12 happy_x_1
= case happyOutTok happy_x_1 of { (Token LOWER_IDENTIFIER happy_var_1) ->
happyIn11
(NT happy_var_1
)}
happyNewToken action sts stk [] =
happyDoAction 6# notHappyAtAll action sts stk []
happyNewToken action sts stk (tk:tks) =
let cont i = happyDoAction i tk action sts stk tks in
case tk of {
Token FULL_STOP happy_dollar_dollar -> cont 1#;
Token LOWER_IDENTIFIER happy_dollar_dollar -> cont 2#;
Token OR happy_dollar_dollar -> cont 3#;
Token UPPER_IDENTIFIER happy_dollar_dollar -> cont 4#;
Token YIELDS happy_dollar_dollar -> cont 5#;
_ -> happyError' (tk:tks)
}
happyError_ 6# tk tks = happyError' tks
happyError_ _ tk tks = happyError' (tk:tks)
newtype HappyIdentity a = HappyIdentity a
happyIdentity = HappyIdentity
happyRunIdentity (HappyIdentity a) = a
instance Functor HappyIdentity where
fmap f (HappyIdentity a) = HappyIdentity (f a)
instance Applicative HappyIdentity where
pure = return
a <*> b = (fmap id a) <*> b
instance Monad HappyIdentity where
return = HappyIdentity
(HappyIdentity p) >>= q = q p
happyThen :: () => HappyIdentity a -> (a -> HappyIdentity b) -> HappyIdentity b
happyThen = (>>=)
happyReturn :: () => a -> HappyIdentity a
happyReturn = (return)
happyThen1 m k tks = (>>=) m (\a -> k a tks)
happyReturn1 :: () => a -> b -> HappyIdentity a
happyReturn1 = \a tks -> (return) a
happyError' :: () => [(Token)] -> HappyIdentity a
happyError' = HappyIdentity . parseError
parseTokens tks = happyRunIdentity happySomeParser where
happySomeParser = happyThen (happyParse 0# tks) (\x -> happyReturn (happyOut4 x))
happySeq = happyDontSeq
parseError :: [Token] -> a
parseError ts = error $ "parseError at: " ++ show ts
parse :: String -> Grammar String String
parse = parseTokens . scan
parseTokens :: [Token] -> Grammar String String
# 1 "/usr/include/stdc-predef.h" 1 3 4
# 17 "/usr/include/stdc-predef.h" 3 4
#if __GLASGOW_HASKELL__ > 706
#define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Bool)
#define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Bool)
#define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Bool)
#else
#define LT(n,m) (n Happy_GHC_Exts.<# m)
#define GTE(n,m) (n Happy_GHC_Exts.>=# m)
#define EQ(n,m) (n Happy_GHC_Exts.==# m)
#endif
data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList
infixr 9 `HappyStk`
data HappyStk a = HappyStk a (HappyStk a)
happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll
happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) =
happyReturn1 ans
happyAccept j tk st sts (HappyStk ans _) =
(happyTcHack j (happyTcHack st)) (happyReturn1 ans)
happyDoAction i tk st
=
case action of
0# ->
happyFail i tk st
1# ->
happyAccept i tk st
n | LT(n,(0# :: Happy_GHC_Exts.Int#)) ->
(happyReduceArr Happy_Data_Array.! rule) i tk st
where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#))))))
n ->
happyShift new_state i tk st
where new_state = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#))
where off = indexShortOffAddr happyActOffsets st
off_i = (off Happy_GHC_Exts.+# i)
check = if GTE(off_i,(0# :: Happy_GHC_Exts.Int#))
then EQ(indexShortOffAddr happyCheck off_i, i)
else False
action
| check = indexShortOffAddr happyTable off_i
| otherwise = indexShortOffAddr happyDefActions st
indexShortOffAddr (HappyA# arr) off =
Happy_GHC_Exts.narrow16Int# i
where
i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low)
high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#)))
low = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off'))
off' = off Happy_GHC_Exts.*# 2#
data HappyAddr = HappyA# Happy_GHC_Exts.Addr#
happyShift new_state 0# tk st sts stk@(x `HappyStk` _) =
let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
happyDoAction i tk new_state (HappyCons (st) (sts)) (stk)
happyShift new_state i tk st sts stk =
happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk)
happySpecReduce_0 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_0 nt fn j tk st@((action)) sts stk
= happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk)
happySpecReduce_1 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk')
= let r = fn v1 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happySpecReduce_2 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk')
= let r = fn v1 v2 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happySpecReduce_3 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk')
= let r = fn v1 v2 v3 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happyReduce k i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happyReduce k nt fn j tk st sts stk
= case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of
sts1@((HappyCons (st1@(action)) (_))) ->
let r = fn stk in
happyDoSeq r (happyGoto nt j tk st1 sts1 r)
happyMonadReduce k nt fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happyMonadReduce k nt fn j tk st sts stk =
case happyDrop k (HappyCons (st) (sts)) of
sts1@((HappyCons (st1@(action)) (_))) ->
let drop_stk = happyDropStk k stk in
happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk))
happyMonad2Reduce k nt fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happyMonad2Reduce k nt fn j tk st sts stk =
case happyDrop k (HappyCons (st) (sts)) of
sts1@((HappyCons (st1@(action)) (_))) ->
let drop_stk = happyDropStk k stk
off = indexShortOffAddr happyGotoOffsets st1
off_i = (off Happy_GHC_Exts.+# nt)
new_state = indexShortOffAddr happyTable off_i
in
happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk))
happyDrop 0# l = l
happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t
happyDropStk 0# l = l
happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs
happyGoto nt j tk st =
happyDoAction j tk new_state
where off = indexShortOffAddr happyGotoOffsets st
off_i = (off Happy_GHC_Exts.+# nt)
new_state = indexShortOffAddr happyTable off_i
happyFail 0# tk old_st _ stk@(x `HappyStk` _) =
let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
happyError_ i tk
happyFail i tk (action) sts stk =
happyDoAction 0# tk action sts ( (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk)
notHappyAtAll :: a
notHappyAtAll = error "Internal Happy error\n"
happyTcHack :: Happy_GHC_Exts.Int# -> a -> a
happyTcHack x y = y
happyDoSeq, happyDontSeq :: a -> b -> b
happyDoSeq a b = a `seq` b
happyDontSeq a b = b