----------------------------------------------------------------------------- -- | -- Module : Data.Functor.Contravariant -- Copyright : (C) 2007-2011 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : provisional -- Portability : portable -- -- 'Contravariant' functors, sometimes referred to colloquially as @Cofunctor@, -- even though the dual of a 'Functor' is just a 'Functor'. As with 'Functor' -- the definition of 'Contravariant' for a given ADT is unambiguous. ---------------------------------------------------------------------------- module Data.Functor.Contravariant ( -- * Contravariant Functors Contravariant(..) -- * Operators , (>$<), (>$$<) -- * Predicates , Predicate(..) -- * Comparisons , Comparison(..) , defaultComparison -- * Equivalence Relations , Equivalence(..) , defaultEquivalence -- * Dual arrows , Op(..) ) where import Control.Applicative import Control.Category import Data.Functor.Product import Data.Functor.Constant import Prelude hiding ((.),id) -- | Any instance should be subject to the following laws: -- -- > contramap id = id -- > contramap f . contramap g = contramap (g . f) -- -- Note, that the second law follows from the free theorem of the type of -- 'contramap' and the first law, so you need only check that the former -- condition holds. class Contravariant f where contramap :: (a -> b) -> f b -> f a infixl 4 >$<, >$$< (>$<) :: Contravariant f => (a -> b) -> f b -> f a (>$<) = contramap {-# INLINE (>$<) #-} (>$$<) :: Contravariant f => f b -> (a -> b) -> f a (>$$<) = flip contramap {-# INLINE (>$$<) #-} newtype Predicate a = Predicate { getPredicate :: a -> Bool } -- | A 'Predicate' is a 'Contravariant' 'Functor', because 'contramap' can -- apply its function argument to the input of the predicate. instance Contravariant Predicate where contramap f g = Predicate $ getPredicate g . f -- | Defines a total ordering on a type as per 'compare' newtype Comparison a = Comparison { getComparison :: a -> a -> Ordering } -- | A 'Comparison' is a 'Contravariant' 'Functor', because 'contramap' can -- apply its function argument to each input to each input to the -- comparison function. instance Contravariant Comparison where contramap f g = Comparison $ \a b -> getComparison g (f a) (f b) -- | Compare using 'compare' defaultComparison :: Ord a => Comparison a defaultComparison = Comparison compare -- | Define an equivalence relation newtype Equivalence a = Equivalence { getEquivalence :: a -> a -> Bool } -- | Equivalence relations are 'Contravariant', because you can -- apply the contramapped function to each input to the equivalence -- relation. instance Contravariant Equivalence where contramap f g = Equivalence $ \a b -> getEquivalence g (f a) (f b) -- | Check for equivalence with '==' defaultEquivalence :: Eq a => Equivalence a defaultEquivalence = Equivalence (==) -- | Dual function arrows. newtype Op a b = Op { getOp :: b -> a } instance Category Op where id = Op id Op f . Op g = Op (g . f) instance Contravariant (Op a) where contramap f g = Op (getOp g . f) -- | Data.Functor.Product instance (Contravariant f, Contravariant g) => Contravariant (Product f g) where contramap f (Pair a b) = Pair (contramap f a) (contramap f b) -- | Data.Functor.Constant instance Contravariant (Constant a) where contramap _ (Constant a) = Constant a -- | Control.Applicative.Const instance Contravariant (Const a) where contramap _ (Const a) = Const a