{-# LANGUAGE CPP #-} {-# LANGUAGE ExistentialQuantification #-} {-# LANGUAGE Rank2Types #-} #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ > 707 {-# LANGUAGE DeriveDataTypeable #-} #endif #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ <= 707 {-# LANGUAGE KindSignatures #-} #endif ----------------------------------------------------------------------------- -- | -- Copyright : (C) 2013 Edward Kmett, Gershom Bazerman and Derek Elkins -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : provisional -- Portability : portable -- -- The Day convolution of two contravariant functors is a contravariant -- functor. -- -- <http://ncatlab.org/nlab/show/Day+convolution> ---------------------------------------------------------------------------- module Data.Functor.Contravariant.Day ( Day(..) , day , runDay , assoc, disassoc , swapped , intro1, intro2 , day1, day2 , diag , trans1, trans2 ) where import Control.Applicative import Data.Functor.Contravariant import Data.Proxy import Data.Tuple (swap) #ifdef __GLASGOW_HASKELL__ import Data.Typeable #endif -- | The Day convolution of two contravariant functors. data Day f g a = forall b c. Day (f b) (g c) (a -> (b, c)) #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ > 707 deriving Typeable #endif -- | Construct the Day convolution -- -- @ -- 'day1' ('day' f g) = f -- 'day2' ('day' f g) = g -- @ day :: f a -> g b -> Day f g (a, b) day fa gb = Day fa gb id #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ <= 707 instance (Typeable1 f, Typeable1 g) => Typeable1 (Day f g) where typeOf1 tfga = mkTyConApp dayTyCon [typeOf1 (fa tfga), typeOf1 (ga tfga)] where fa :: t f (g :: * -> *) a -> f a fa = undefined ga :: t (f :: * -> *) g a -> g a ga = undefined dayTyCon :: TyCon #if MIN_VERSION_base(4,4,0) dayTyCon = mkTyCon3 "contravariant" "Data.Functor.Contravariant.Day" "Day" #else dayTyCon = mkTyCon "Data.Functor.Contravariant.Day.Day" #endif #endif instance Contravariant (Day f g) where contramap f (Day fb gc abc) = Day fb gc (abc . f) -- | Break apart the Day convolution of two contravariant functors. runDay :: (Contravariant f, Contravariant g) => Day f g a -> (f a, g a) runDay (Day fb gc abc) = ( contramap (fst . abc) fb , contramap (snd . abc) gc ) -- | Day convolution provides a monoidal product. The associativity -- of this monoid is witnessed by 'assoc' and 'disassoc'. -- -- @ -- 'assoc' . 'disassoc' = 'id' -- 'disassoc' . 'assoc' = 'id' -- 'contramap' f '.' 'assoc' = 'assoc' '.' 'contramap' f -- @ assoc :: Day f (Day g h) a -> Day (Day f g) h a assoc (Day fb (Day gd he cde) abc) = Day (Day fb gd id) he $ \a -> case cde <$> abc a of (b, (d, e)) -> ((b, d), e) -- | Day convolution provides a monoidal product. The associativity -- of this monoid is witnessed by 'assoc' and 'disassoc'. -- -- @ -- 'assoc' . 'disassoc' = 'id' -- 'disassoc' . 'assoc' = 'id' -- 'contramap' f '.' 'disassoc' = 'disassoc' '.' 'contramap' f -- @ disassoc :: Day (Day f g) h a -> Day f (Day g h) a disassoc (Day (Day fd ge bde) hc abc) = Day fd (Day ge hc id) $ \a -> case abc a of (b, c) -> case bde b of (d, e) -> (d, (e, c)) -- | The monoid for Day convolution /in Haskell/ is symmetric. -- -- @ -- 'contramap' f '.' 'swapped' = 'swapped' '.' 'contramap' f -- @ swapped :: Day f g a -> Day g f a swapped (Day fb gc abc) = Day gc fb (swap . abc) -- | Proxy serves as the unit of Day convolution. -- -- @ -- 'day1' '.' 'intro1' = 'id' -- 'contramap' f '.' 'intro1' = 'intro1' '.' 'contramap' f -- @ intro1 :: f a -> Day Proxy f a intro1 fa = Day Proxy fa $ \a -> ((),a) -- | Proxy serves as the unit of Day convolution. -- -- @ -- 'day2' '.' 'intro2' = 'id' -- 'contramap' f '.' 'intro2' = 'intro2' '.' 'contramap' f -- @ intro2 :: f a -> Day f Proxy a intro2 fa = Day fa Proxy $ \a -> (a,()) -- | In Haskell we can do general purpose elimination, but in a more general setting -- it is only possible to eliminate the unit. -- -- @ -- 'day1' '.' 'intro1' = 'id' -- 'day1' = 'fst' '.' 'runDay' -- 'contramap' f '.' 'day1' = 'day1' '.' 'contramap' f -- @ day1 :: Contravariant f => Day f g a -> f a day1 (Day fb _ abc) = contramap (fst . abc) fb -- | In Haskell we can do general purpose elimination, but in a more general setting -- it is only possible to eliminate the unit. -- @ -- 'day2' '.' 'intro2' = 'id' -- 'day2' = 'snd' '.' 'runDay' -- 'contramap' f '.' 'day2' = 'day2' '.' 'contramap' f -- @ day2 :: Contravariant g => Day f g a -> g a day2 (Day _ gc abc) = contramap (snd . abc) gc -- | Diagonalize the Day convolution: -- -- @ -- 'day1' '.' 'diag' = 'id' -- 'day2' '.' 'diag' = 'id' -- 'runDay '.' 'diag' = \a -> (a,a) -- 'contramap' f . 'diag' = 'diag' . 'contramap' f -- @ diag :: f a -> Day f f a diag fa = Day fa fa $ \a -> (a,a) -- | Apply a natural transformation to the left-hand side of a Day convolution. -- -- This respects the naturality of the natural transformation you supplied: -- -- @ -- 'contramap' f '.' 'trans1' fg = 'trans1' fg '.' 'contramap' f -- @ trans1 :: (forall x. f x -> g x) -> Day f h a -> Day g h a trans1 fg (Day fb hc abc) = Day (fg fb) hc abc -- | Apply a natural transformation to the right-hand side of a Day convolution. -- -- This respects the naturality of the natural transformation you supplied: -- -- @ -- 'contramap' f '.' 'trans2' fg = 'trans2' fg '.' 'contramap' f -- @ trans2 :: (forall x. g x -> h x) -> Day f g a -> Day f h a trans2 gh (Day fb gc abc) = Day fb (gh gc) abc