{-# LANGUAGE CPP #-} {-# LANGUAGE ExistentialQuantification #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE RankNTypes #-} ----------------------------------------------------------------------------- -- | -- Copyright : (C) 2014 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : provisional -- Portability : portable -- -- Eitan Chatav first introduced me to this construction -- -- The Day convolution of two covariant functors is a covariant functor. -- -- Day convolution is usually defined in terms of contravariant functors, -- however, it just needs a monoidal category, and Hask^op is also monoidal. -- -- Day convolution can be used to nicely describe monoidal functors as monoid -- objects w.r.t this product. -- -- <http://ncatlab.org/nlab/show/Day+convolution> ---------------------------------------------------------------------------- module Data.Functor.Day ( Day(..) , day , dap , assoc, disassoc , swapped , intro1, intro2 , elim1, elim2 , trans1, trans2 ) where import Control.Applicative import Data.Functor.Identity #ifdef __GLASGOW_HASKELL__ import Data.Typeable #endif -- | The Day convolution of two covariant functors. data Day f g a = forall b c. Day (f b) (g c) (b -> c -> a) #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 707 deriving Typeable #endif -- | Construct the Day convolution day :: f (a -> b) -> g a -> Day f g b day fa gb = Day fa gb id #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ < 707 instance (Typeable1 f, Typeable1 g) => Typeable1 (Day f g) where typeOf1 tfga = mkTyConApp dayTyCon [typeOf1 (fa tfga), typeOf1 (ga tfga)] where fa :: t f (g :: * -> *) a -> f a fa = undefined ga :: t (f :: * -> *) g a -> g a ga = undefined dayTyCon :: TyCon #if MIN_VERSION_base(4,4,0) dayTyCon = mkTyCon3 "contravariant" "Data.Functor.Day" "Day" #else dayTyCon = mkTyCon "Data.Functor.Day.Day" #endif #endif instance Functor (Day f g) where fmap f (Day fb gc bca) = Day fb gc $ \b c -> f (bca b c) -- | Day convolution provides a monoidal product. The associativity -- of this monoid is witnessed by 'assoc' and 'disassoc'. -- -- @ -- 'assoc' . 'disassoc' = 'id' -- 'disassoc' . 'assoc' = 'id' -- 'fmap' f '.' 'assoc' = 'assoc' '.' 'fmap' f -- @ assoc :: Day f (Day g h) a -> Day (Day f g) h a assoc (Day fb (Day gd he dec) bca) = Day (Day fb gd (,)) he $ \ (b,d) e -> bca b (dec d e) -- | Day convolution provides a monoidal product. The associativity -- of this monoid is witnessed by 'assoc' and 'disassoc'. -- -- @ -- 'assoc' . 'disassoc' = 'id' -- 'disassoc' . 'assoc' = 'id' -- 'fmap' f '.' 'disassoc' = 'disassoc' '.' 'fmap' f -- @ disassoc :: Day (Day f g) h a -> Day f (Day g h) a disassoc (Day (Day fb gc bce) hd eda) = Day fb (Day gc hd (,)) $ \ b (c,d) -> eda (bce b c) d -- | The monoid for 'Day' convolution on the cartesian monoidal structure is symmetric. -- -- @ -- 'fmap' f '.' 'swapped' = 'swapped' '.' 'fmap' f -- @ swapped :: Day f g a -> Day g f a swapped (Day fb gc abc) = Day gc fb (flip abc) -- | 'Identity' is the unit of 'Day' convolution -- -- @ -- 'intro1' '.' 'elim1' = 'id' -- 'elim1' '.' 'intro1' = 'id' -- @ intro1 :: f a -> Day Identity f a intro1 fa = Day (Identity ()) fa $ \_ a -> a -- | 'Identity' is the unit of 'Day' convolution -- -- @ -- 'intro2' '.' 'elim2' = 'id' -- 'elim2' '.' 'intro2' = 'id' -- @ intro2 :: f a -> Day f Identity a intro2 fa = Day fa (Identity ()) const -- | 'Identity' is the unit of 'Day' convolution -- -- @ -- 'intro1' '.' 'elim1' = 'id' -- 'elim1' '.' 'intro1' = 'id' -- @ elim1 :: Functor f => Day Identity f a -> f a elim1 (Day (Identity b) fc bca) = bca b <$> fc -- | 'Identity' is the unit of 'Day' convolution -- -- @ -- 'intro2' '.' 'elim2' = 'id' -- 'elim2' '.' 'intro2' = 'id' -- @ elim2 :: Functor f => Day f Identity a -> f a elim2 (Day fb (Identity c) bca) = flip bca c <$> fb -- | Collapse via a monoidal functor. -- -- @ -- 'dap' ('day' f g) = f '<*>' g -- @ dap :: Applicative f => Day f f a -> f a dap (Day fb fc abc) = liftA2 abc fb fc -- | Apply a natural transformation to the left-hand side of a Day convolution. -- -- This respects the naturality of the natural transformation you supplied: -- -- @ -- 'fmap' f '.' 'trans1' fg = 'trans1' fg '.' 'fmap' f -- @ trans1 :: (forall x. f x -> g x) -> Day f h a -> Day g h a trans1 fg (Day fb hc bca) = Day (fg fb) hc bca -- | Apply a natural transformation to the right-hand side of a Day convolution. -- -- This respects the naturality of the natural transformation you supplied: -- -- @ -- 'fmap' f '.' 'trans2' fg = 'trans2' fg '.' 'fmap' f -- @ trans2 :: (forall x. g x -> h x) -> Day f g a -> Day f h a trans2 gh (Day fb gc bca) = Day fb (gh gc) bca