#ifdef __GLASGOW_HASKELL__
#define LANGUAGE_DeriveDataTypeable
#endif
#ifndef MIN_VERSION_tagged
#define MIN_VERSION_tagged(x,y,z) 1
#endif
#ifndef MIN_VERSION_base
#define MIN_VERSION_base(x,y,z) 1
#endif
#if __GLASGOW_HASKELL__ >= 704
#if MIN_VERSION_transformers(0,3,0) && MIN_VERSION_tagged(0,6,1)
#else
#endif
#endif
module Data.Functor.Contravariant (
Contravariant(..)
, phantom
, (>$<), (>$$<), ($<)
, Predicate(..)
, Comparison(..)
, defaultComparison
, Equivalence(..)
, defaultEquivalence
, comparisonEquivalence
, Op(..)
) where
import Control.Applicative
import Control.Applicative.Backwards
import Control.Category
import Control.Monad.Trans.Error
import Control.Monad.Trans.Except
import Control.Monad.Trans.Identity
import Control.Monad.Trans.List
import Control.Monad.Trans.Maybe
import qualified Control.Monad.Trans.RWS.Lazy as Lazy
import qualified Control.Monad.Trans.RWS.Strict as Strict
import Control.Monad.Trans.Reader
import qualified Control.Monad.Trans.State.Lazy as Lazy
import qualified Control.Monad.Trans.State.Strict as Strict
import qualified Control.Monad.Trans.Writer.Lazy as Lazy
import qualified Control.Monad.Trans.Writer.Strict as Strict
import Data.Function (on)
import Data.Functor.Product
import Data.Functor.Sum
import Data.Functor.Constant
import Data.Functor.Compose
import Data.Functor.Reverse
#if MIN_VERSION_base(4,8,0)
import Data.Monoid (Alt(..))
#else
import Data.Monoid (Monoid(..))
#endif
#ifdef MIN_VERSION_semigroups
import Data.Semigroup (Semigroup(..))
#endif
#ifdef LANGUAGE_DeriveDataTypeable
import Data.Typeable
#endif
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ < 707 && defined(VERSION_tagged)
import Data.Proxy
#endif
#ifdef MIN_VERSION_StateVar
import Data.StateVar
#endif
#if __GLASGOW_HASKELL__ >= 702
#define GHC_GENERICS
import GHC.Generics
#endif
import Prelude hiding ((.),id)
class Contravariant f where
contramap :: (a -> b) -> f b -> f a
(>$) :: b -> f b -> f a
(>$) = contramap . const
phantom :: (Functor f, Contravariant f) => f a -> f b
phantom x = () <$ x $< ()
infixl 4 >$, $<, >$<, >$$<
($<) :: Contravariant f => f b -> b -> f a
($<) = flip (>$)
(>$<) :: Contravariant f => (a -> b) -> f b -> f a
(>$<) = contramap
(>$$<) :: Contravariant f => f b -> (a -> b) -> f a
(>$$<) = flip contramap
#if MIN_VERSION_base(4,8,0)
instance Contravariant f => Contravariant (Alt f) where
contramap f = Alt . contramap f . getAlt
#endif
#ifdef GHC_GENERICS
instance Contravariant V1 where
contramap _ x = x `seq` undefined
instance Contravariant U1 where
contramap _ U1 = U1
instance Contravariant f => Contravariant (Rec1 f) where
contramap f (Rec1 fp)= Rec1 (contramap f fp)
instance Contravariant f => Contravariant (M1 i c f) where
contramap f (M1 fp) = M1 (contramap f fp)
instance Contravariant (K1 i c) where
contramap _ (K1 c) = K1 c
instance (Contravariant f, Contravariant g) => Contravariant (f :*: g) where
contramap f (xs :*: ys) = contramap f xs :*: contramap f ys
instance (Functor f, Contravariant g) => Contravariant (f :.: g) where
contramap f (Comp1 fg) = Comp1 (fmap (contramap f) fg)
instance (Contravariant f, Contravariant g) => Contravariant (f :+: g) where
contramap f (L1 xs) = L1 (contramap f xs)
contramap f (R1 ys) = R1 (contramap f ys)
#endif
instance Contravariant m => Contravariant (ErrorT e m) where
contramap f = ErrorT . contramap (fmap f) . runErrorT
instance Contravariant m => Contravariant (ExceptT e m) where
contramap f = ExceptT . contramap (fmap f) . runExceptT
instance Contravariant f => Contravariant (IdentityT f) where
contramap f = IdentityT . contramap f . runIdentityT
instance Contravariant m => Contravariant (ListT m) where
contramap f = ListT . contramap (fmap f) . runListT
instance Contravariant m => Contravariant (MaybeT m) where
contramap f = MaybeT . contramap (fmap f) . runMaybeT
instance Contravariant m => Contravariant (Lazy.RWST r w s m) where
contramap f m = Lazy.RWST $ \r s ->
contramap (\ ~(a, s', w) -> (f a, s', w)) $ Lazy.runRWST m r s
instance Contravariant m => Contravariant (Strict.RWST r w s m) where
contramap f m = Strict.RWST $ \r s ->
contramap (\ (a, s', w) -> (f a, s', w)) $ Strict.runRWST m r s
instance Contravariant m => Contravariant (ReaderT r m) where
contramap f = ReaderT . fmap (contramap f) . runReaderT
instance Contravariant m => Contravariant (Lazy.StateT s m) where
contramap f m = Lazy.StateT $ \s ->
contramap (\ ~(a, s') -> (f a, s')) $ Lazy.runStateT m s
instance Contravariant m => Contravariant (Strict.StateT s m) where
contramap f m = Strict.StateT $ \s ->
contramap (\ (a, s') -> (f a, s')) $ Strict.runStateT m s
instance Contravariant m => Contravariant (Lazy.WriterT w m) where
contramap f = Lazy.mapWriterT $ contramap $ \ ~(a, w) -> (f a, w)
instance Contravariant m => Contravariant (Strict.WriterT w m) where
contramap f = Strict.mapWriterT $ contramap $ \ (a, w) -> (f a, w)
instance (Contravariant f, Contravariant g) => Contravariant (Sum f g) where
contramap f (InL xs) = InL (contramap f xs)
contramap f (InR ys) = InR (contramap f ys)
instance (Contravariant f, Contravariant g) => Contravariant (Product f g) where
contramap f (Pair a b) = Pair (contramap f a) (contramap f b)
instance Contravariant (Constant a) where
contramap _ (Constant a) = Constant a
instance Contravariant (Const a) where
contramap _ (Const a) = Const a
instance (Functor f, Contravariant g) => Contravariant (Compose f g) where
contramap f (Compose fga) = Compose (fmap (contramap f) fga)
instance Contravariant f => Contravariant (Backwards f) where
contramap f = Backwards . contramap f . forwards
instance Contravariant f => Contravariant (Reverse f) where
contramap f = Reverse . contramap f . getReverse
#ifdef MIN_VERSION_StateVar
instance Contravariant SettableStateVar where
contramap f (SettableStateVar k) = SettableStateVar (k . f)
#endif
#if (__GLASGOW_HASKELL__ >= 707) || defined(VERSION_tagged)
instance Contravariant Proxy where
contramap _ Proxy = Proxy
#endif
newtype Predicate a = Predicate { getPredicate :: a -> Bool }
#ifdef LANGUAGE_DeriveDataTypeable
deriving Typeable
#endif
instance Contravariant Predicate where
contramap f g = Predicate $ getPredicate g . f
newtype Comparison a = Comparison { getComparison :: a -> a -> Ordering }
#ifdef LANGUAGE_DeriveDataTypeable
deriving Typeable
#endif
instance Contravariant Comparison where
contramap f g = Comparison $ on (getComparison g) f
#ifdef MIN_VERSION_semigroups
instance Semigroup (Comparison a) where
Comparison p <> Comparison q = Comparison $ mappend p q
#endif
instance Monoid (Comparison a) where
mempty = Comparison (\_ _ -> EQ)
mappend (Comparison p) (Comparison q) = Comparison $ mappend p q
defaultComparison :: Ord a => Comparison a
defaultComparison = Comparison compare
newtype Equivalence a = Equivalence { getEquivalence :: a -> a -> Bool }
#ifdef LANGUAGE_DeriveDataTypeable
deriving Typeable
#endif
instance Contravariant Equivalence where
contramap f g = Equivalence $ on (getEquivalence g) f
#ifdef MIN_VERSION_semigroups
instance Semigroup (Equivalence a) where
Equivalence p <> Equivalence q = Equivalence $ \a b -> p a b && q a b
#endif
instance Monoid (Equivalence a) where
mempty = Equivalence (\_ _ -> True)
mappend (Equivalence p) (Equivalence q) = Equivalence $ \a b -> p a b && q a b
defaultEquivalence :: Eq a => Equivalence a
defaultEquivalence = Equivalence (==)
comparisonEquivalence :: Comparison a -> Equivalence a
comparisonEquivalence (Comparison p) = Equivalence $ \a b -> p a b == EQ
newtype Op a b = Op { getOp :: b -> a }
#ifdef LANGUAGE_DeriveDataTypeable
deriving Typeable
#endif
instance Category Op where
id = Op id
Op f . Op g = Op (g . f)
instance Contravariant (Op a) where
contramap f g = Op (getOp g . f)
#ifdef MIN_VERSION_semigroups
instance Semigroup a => Semigroup (Op a b) where
Op p <> Op q = Op $ \a -> p a <> q a
#endif
instance Monoid a => Monoid (Op a b) where
mempty = Op (const mempty)
mappend (Op p) (Op q) = Op $ \a -> mappend (p a) (q a)
#if MIN_VERSION_base(4,5,0)
instance Num a => Num (Op a b) where
Op f + Op g = Op $ \a -> f a + g a
Op f * Op g = Op $ \a -> f a * g a
Op f Op g = Op $ \a -> f a g a
abs (Op f) = Op $ abs . f
signum (Op f) = Op $ signum . f
fromInteger = Op . const . fromInteger
instance Fractional a => Fractional (Op a b) where
Op f / Op g = Op $ \a -> f a / g a
recip (Op f) = Op $ recip . f
fromRational = Op . const . fromRational
instance Floating a => Floating (Op a b) where
pi = Op $ const pi
exp (Op f) = Op $ exp . f
sqrt (Op f) = Op $ sqrt . f
log (Op f) = Op $ log . f
sin (Op f) = Op $ sin . f
tan (Op f) = Op $ tan . f
cos (Op f) = Op $ cos . f
asin (Op f) = Op $ asin . f
atan (Op f) = Op $ atan . f
acos (Op f) = Op $ acos . f
sinh (Op f) = Op $ sinh . f
tanh (Op f) = Op $ tanh . f
cosh (Op f) = Op $ cosh . f
asinh (Op f) = Op $ asinh . f
atanh (Op f) = Op $ atanh . f
acosh (Op f) = Op $ acosh . f
Op f ** Op g = Op $ \a -> f a ** g a
logBase (Op f) (Op g) = Op $ \a -> logBase (f a) (g a)
#endif