module Crypto.PubKey.ECC.ECDSA
( Signature(..)
, PublicPoint
, PublicKey(..)
, PrivateNumber
, PrivateKey(..)
, KeyPair(..)
, toPublicKey
, toPrivateKey
, signWith
, sign
, verify
) where
import Control.Monad
import Crypto.Random.Types
import Data.Bits (shiftR)
import Crypto.Internal.ByteArray (ByteArrayAccess)
import Data.Data
import Crypto.Number.ModArithmetic (inverse)
import Crypto.Number.Serialize
import Crypto.Number.Generate
import Crypto.PubKey.ECC.Types
import Crypto.PubKey.ECC.Prim
import Crypto.Hash
data Signature = Signature
{ sign_r :: Integer
, sign_s :: Integer
} deriving (Show,Read,Eq,Data,Typeable)
data PrivateKey = PrivateKey
{ private_curve :: Curve
, private_d :: PrivateNumber
} deriving (Show,Read,Eq,Data,Typeable)
data PublicKey = PublicKey
{ public_curve :: Curve
, public_q :: PublicPoint
} deriving (Show,Read,Eq,Data,Typeable)
data KeyPair = KeyPair Curve PublicPoint PrivateNumber
deriving (Show,Read,Eq,Data,Typeable)
toPublicKey :: KeyPair -> PublicKey
toPublicKey (KeyPair curve pub _) = PublicKey curve pub
toPrivateKey :: KeyPair -> PrivateKey
toPrivateKey (KeyPair curve _ priv) = PrivateKey curve priv
signWith :: (ByteArrayAccess msg, HashAlgorithm hash)
=> Integer
-> PrivateKey
-> hash
-> msg
-> Maybe Signature
signWith k (PrivateKey curve d) hashAlg msg = do
let z = tHash hashAlg msg n
CurveCommon _ _ g n _ = common_curve curve
let point = pointMul curve k g
r <- case point of
PointO -> Nothing
Point x _ -> return $ x `mod` n
kInv <- inverse k n
let s = kInv * (z + r * d) `mod` n
when (r == 0 || s == 0) Nothing
return $ Signature r s
sign :: (ByteArrayAccess msg, HashAlgorithm hash, MonadRandom m)
=> PrivateKey -> hash -> msg -> m Signature
sign pk hashAlg msg = do
k <- generateBetween 1 (n 1)
case signWith k pk hashAlg msg of
Nothing -> sign pk hashAlg msg
Just sig -> return sig
where n = ecc_n . common_curve $ private_curve pk
verify :: (ByteArrayAccess msg, HashAlgorithm hash) => hash -> PublicKey -> Signature -> msg -> Bool
verify _ (PublicKey _ PointO) _ _ = False
verify hashAlg pk@(PublicKey curve q) (Signature r s) msg
| r < 1 || r >= n || s < 1 || s >= n = False
| otherwise = maybe False (r ==) $ do
w <- inverse s n
let z = tHash hashAlg msg n
u1 = z * w `mod` n
u2 = r * w `mod` n
g' = pointMul curve u1 g
q' = pointMul curve u2 q
x = pointAdd curve g' q'
case x of
PointO -> Nothing
Point x1 _ -> return $ x1 `mod` n
where n = ecc_n cc
g = ecc_g cc
cc = common_curve $ public_curve pk
tHash :: (ByteArrayAccess msg, HashAlgorithm hash) => hash -> msg -> Integer -> Integer
tHash hashAlg m n
| d > 0 = shiftR e d
| otherwise = e
where e = os2ip $ hashWith hashAlg m
d = log2 e log2 n
log2 = ceiling . logBase (2 :: Double) . fromIntegral