-- | -- Module : Crypto.PubKey.RSA -- License : BSD-style -- Maintainer : Vincent Hanquez <vincent@snarc.org> -- Stability : experimental -- Portability : Good -- module Crypto.PubKey.RSA ( Error(..) , PublicKey(..) , PrivateKey(..) , Blinder(..) -- * generation function , generateWith , generate , generateBlinder ) where import Crypto.Internal.Imports import Crypto.Random.Types import Crypto.Number.ModArithmetic (inverse, inverseCoprimes) import Crypto.Number.Generate (generateMax) import Crypto.Number.Prime (generatePrime) import Crypto.PubKey.RSA.Types {- -- some bad implementation will not serialize ASN.1 integer properly, leading -- to negative modulus. -- TODO : Find a better place for this toPositive :: Integer -> Integer toPositive int | int < 0 = uintOfBytes $ bytesOfInt int | otherwise = int where uintOfBytes = foldl (\acc n -> (acc `shiftL` 8) + fromIntegral n) 0 bytesOfInt :: Integer -> [Word8] bytesOfInt n = if testBit (head nints) 7 then nints else 0xff : nints where nints = reverse $ plusOne $ reverse $ map complement $ bytesOfUInt (abs n) plusOne [] = [1] plusOne (x:xs) = if x == 0xff then 0 : plusOne xs else (x+1) : xs bytesOfUInt x = reverse (list x) where list i = if i <= 0xff then [fromIntegral i] else (fromIntegral i .&. 0xff) : list (i `shiftR` 8) -} -- | Generate a key pair given p and q. -- -- p and q need to be distinct prime numbers. -- -- e need to be coprime to phi=(p-1)*(q-1). If that's not the -- case, the function will not return a key pair. -- A small hamming weight results in better performance. -- -- * e=0x10001 is a popular choice -- -- * e=3 is popular as well, but proven to not be as secure for some cases. -- generateWith :: (Integer, Integer) -- ^ chosen distinct primes p and q -> Int -- ^ size in bytes -> Integer -- ^ RSA public exponant 'e' -> Maybe (PublicKey, PrivateKey) generateWith (p,q) size e = case inverse e phi of Nothing -> Nothing Just d -> Just (pub,priv d) where n = p*q phi = (p-1)*(q-1) -- q and p should be *distinct* *prime* numbers, hence always coprime qinv = inverseCoprimes q p pub = PublicKey { public_size = size , public_n = n , public_e = e } priv d = PrivateKey { private_pub = pub , private_d = d , private_p = p , private_q = q , private_dP = d `mod` (p-1) , private_dQ = d `mod` (q-1) , private_qinv = qinv } -- | generate a pair of (private, public) key of size in bytes. generate :: MonadRandom m => Int -- ^ size in bytes -> Integer -- ^ RSA public exponant 'e' -> m (PublicKey, PrivateKey) generate size e = loop where loop = do -- loop until we find a valid key pair given e pq <- generatePQ case generateWith pq size e of Nothing -> loop Just pp -> return pp generatePQ = do p <- generatePrime (8 * (size `div` 2)) q <- generateQ p return (p,q) generateQ p = do q <- generatePrime (8 * (size - (size `div` 2))) if p == q then generateQ p else return q -- | Generate a blinder to use with decryption and signing operation -- -- the unique parameter apart from the random number generator is the -- public key value N. generateBlinder :: MonadRandom m => Integer -- ^ RSA public N parameter. -> m Blinder generateBlinder n = (\r -> Blinder r (inverseCoprimes r n)) <$> generateMax n