{-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TypeFamilies #-} ----------------------------------------------------------------------------- -- | -- Module : Diagrams.TwoD.Arrow -- Copyright : (c) 2013 diagrams-lib team (see LICENSE) -- License : BSD-style (see LICENSE) -- Maintainer : diagrams-discuss@googlegroups.com -- -- Drawing arrows in two dimensions. For a tutorial on drawing arrows -- using this module, see the diagrams website: -- <http://projects.haskell.org/diagrams/doc/arrow.html>. -- ----------------------------------------------------------------------------- module Diagrams.TwoD.Arrow ( -- * Examples -- ** Example 1 -- | <<diagrams/src_Diagrams_TwoD_Arrow_example1.svg#diagram=example1&width=500>> -- -- > -- Connecting two diagrams at their origins. -- > -- > sq = square 2 # showOrigin # lc darkgray # lw 0.07 -- > ds = (sq # named "left") ||| strutX 3 ||| (sq # named "right") -- > -- > shaft = cubicSpline False ( map p2 [(0, 0), (1, 0), (1, 0.2), (2, 0.2)]) -- > -- > example1 = ds # connect' (with & arrowHead .~ dart & headSize .~ 0.6 -- > & tailSize .~ 0.5 & arrowTail .~ quill -- > & shaftStyle %~ lw 0.02 & arrowShaft .~ shaft) -- > "left" "right" # pad 1.1 -- ** Example 2 -- | <<diagrams/src_Diagrams_TwoD_Arrow_example2.svg#diagram=example2&width=500>> -- -- > -- Comparing connect, connectPerim, and arrowAt. -- > -- > oct = octagon 1 # lc darkgray # lw 0.10 # showOrigin -- > dias = oct # named "first" ||| strut 3 ||| oct # named "second" -- > -- > -- Connect two diagrams and two points on their trails. -- > ex12 = dias # connect "first" "second" -- > # connectPerim "first" "second" (15/16 \@\@ turn) (9/16 \@\@ turn) -- > -- > -- Place an arrow at (0,0) the size and direction of (0,1). -- > ex3 = arrowAt origin unit_Y -- > -- > example2 = (ex12 <> ex3) # centerXY # pad 1.1 -- * Creating arrows arrowV , arrowV' , arrowAt , arrowAt' , arrowBetween , arrowBetween' , connect , connect' , connectPerim , connectPerim' , connectOutside , connectOutside' , arrow , arrow' -- * Options , ArrowOpts(..) , arrowHead , arrowTail , arrowShaft , headSize , tailSize , headGap , tailGap , gap , headColor , headStyle , tailColor , tailStyle , shaftColor , shaftStyle , straightShaft -- | See "Diagrams.TwoD.Arrowheads" for a list of standard -- arrowheads and help creating your own. , module Diagrams.TwoD.Arrowheads ) where import Control.Applicative ((<*>)) import Control.Arrow (first) import Control.Lens (Lens', Setter', Traversal', generateSignatures, lensRules, makeLensesWith, (%~), (&), (.~), (^.)) import Data.AffineSpace import Data.Default.Class import Data.Functor ((<$>)) import Data.Maybe (fromMaybe) import Data.Monoid (mempty, (<>)) import Data.Monoid.Coproduct (untangle) import Data.Monoid.Split import Data.Semigroup (option) import Data.VectorSpace import Data.Colour hiding (atop) import Diagrams.Attributes import Diagrams.Core import Diagrams.Core.Types (QDiaLeaf (..), mkQD') import Diagrams.Parametric import Diagrams.Path import Diagrams.Solve (quadForm) import Diagrams.Tangent (tangentAtEnd, tangentAtStart) import Diagrams.Trail import Diagrams.TwoD.Arrowheads import Diagrams.TwoD.Path (strokeT) import Diagrams.TwoD.Transform (rotate, translateX) import Diagrams.TwoD.Transform.ScaleInv (scaleInvPrim) import Diagrams.TwoD.Types import Diagrams.TwoD.Vector (direction, unitX, unit_X) import Diagrams.Util (( # )) data ArrowOpts = ArrowOpts { _arrowHead :: ArrowHT , _arrowTail :: ArrowHT , _arrowShaft :: Trail R2 , _headSize :: Double , _tailSize :: Double , _headGap :: Double , _tailGap :: Double , _headStyle :: Style R2 , _tailStyle :: Style R2 , _shaftStyle :: Style R2 } -- | Straight line arrow shaft. straightShaft :: Trail R2 straightShaft = trailFromOffsets [unitX] instance Default ArrowOpts where def = ArrowOpts { _arrowHead = dart , _arrowTail = noTail , _arrowShaft = trailFromOffsets [unitX] , _headSize = 0.3 , _tailSize = 0.3 , _headGap = 0 , _tailGap = 0 -- See note [Default arrow style attributes] , _headStyle = mempty , _tailStyle = mempty , _shaftStyle = mempty } makeLensesWith (lensRules & generateSignatures .~ False) ''ArrowOpts -- | A shape to place at the head of the arrow. arrowHead :: Lens' ArrowOpts ArrowHT -- | A shape to place at the tail of the arrow. arrowTail :: Lens' ArrowOpts ArrowHT -- | The trail to use for the arrow shaft. arrowShaft :: Lens' ArrowOpts (Trail R2) -- | Radius of a circumcircle around the head. headSize :: Lens' ArrowOpts Double -- | Radius of a circumcircle around the tail. tailSize :: Lens' ArrowOpts Double -- | Distance to leave between the head and the target point. headGap :: Lens' ArrowOpts Double -- | Distance to leave between the starting point and the tail. tailGap :: Lens' ArrowOpts Double gap :: Traversal' ArrowOpts Double gap f opts = (\h t -> opts & headGap .~ h & tailGap .~ t) <$> f (opts ^. headGap) <*> f (opts ^. tailGap) -- | Style to apply to the head. @headStyle@ is modified by using the lens -- combinator @%~@ to change the current style. For example, to change -- an opaque black arrowhead to translucent orange: -- @(with & headStyle %~ fc orange . opacity 0.75)@. headStyle :: Lens' ArrowOpts (Style R2) -- | Style to apply to the tail. See `headStyle`. tailStyle :: Lens' ArrowOpts (Style R2) -- | Style to apply to the shaft. See `headStyle`. shaftStyle :: Lens' ArrowOpts (Style R2) -- | A lens for setting or modifying the color of an arrowhead. For -- example, one may write @... (with & headColor .~ blue)@ to get an -- arrow with a blue head, or @... (with & headColor %~ blend 0.5 -- white)@ to make an arrow's head a lighter color. For more general -- control over the style of arrowheads, see 'headStyle'. -- -- Note that the most general type of @headColor@ would be -- -- @ -- (Color c, Color c') => Setter ArrowOpts ArrowOpts c c' -- @ -- -- but that can cause problems for type inference when setting the -- color. However, using it at that more general type may -- occasionally be useful, for example, if you want to apply some -- opacity to a color, as in @... (with & headColor %~ -- (\`withOpacity\` 0.5))@. If you want the more general type, you -- can use @'headStyle' . 'styleFillColor'@ in place of @headColor@. headColor :: Color c => Setter' ArrowOpts c headColor = headStyle . styleFillColor -- | A lens for setting or modifying the color of an arrow -- tail. See 'headColor'. tailColor :: Color c => Setter' ArrowOpts c tailColor = tailStyle . styleFillColor -- | A lens for setting or modifying the color of an arrow -- shaft. See 'headColor'. shaftColor :: Color c => Setter' ArrowOpts c shaftColor = shaftStyle . styleLineColor -- Set the default shaft style of an `ArrowOpts` record by applying the -- default style after all other styles have been applied. -- The semigroup stucture of the lw attribute will insure that the default -- is only used if it has not been set in @opts@. shaftSty :: ArrowOpts -> Style R2 shaftSty opts = opts^.shaftStyle -- Set the default head style. See `shaftSty`. headSty :: ArrowOpts -> Style R2 headSty opts = fc black (opts^.headStyle) -- Set the default tail style. See `shaftSty`. tailSty :: ArrowOpts -> Style R2 tailSty opts = fc black (opts^.tailStyle) -- | Calculate the length of the portion of the horizontal line that passes -- through the origin and is inside of p. xWidth :: (Traced t, V t ~ R2) => t -> Double xWidth p = a + b where a = fromMaybe 0 (magnitude <$> traceV origin unitX p) b = fromMaybe 0 (magnitude <$> traceV origin unit_X p) -- | Get the line color from the shaft to use as the fill color for the joint. colorJoint :: Style v -> Style v colorJoint sStyle = let c = fmap getLineColor . getAttr $ sStyle in case c of Nothing -> fillColor (black :: Colour Double) -- default color for joints $ mempty Just c' -> fillColor c' $ mempty -- | Get line width from a style. widthOfJoint :: Style v -> Double widthOfJoint sStyle = let w = fmap getLineWidth . getAttr $ sStyle in case w of Nothing -> 0.01 -- this case should never happen. Just w' -> w' -- | Combine the head and its joint into a single scale invariant diagram -- and move the origin to the attachment point. Return the diagram -- and its width. mkHead :: Renderable (Path R2) b => ArrowOpts -> (Diagram b R2, Double) mkHead opts = ( (j <> h) # moveOriginBy (jWidth *^ unit_X) # lw 0 , hWidth + jWidth) where (h', j') = (opts^.arrowHead) (opts^.headSize) (widthOfJoint $ shaftSty opts) hWidth = xWidth h' jWidth = xWidth j' h = scaleInvPrim h' unitX # applyStyle (headSty opts) j = scaleInvPrim j' unitX # applyStyle (colorJoint (opts^.shaftStyle)) -- | Just like mkHead only the attachment point is on the right. mkTail :: Renderable (Path R2) b => ArrowOpts -> (Diagram b R2, Double) mkTail opts = ( (t <> j) # moveOriginBy (jWidth *^ unitX) # lw 0 , tWidth + jWidth) where (t', j') = (opts^.arrowTail) (opts^.tailSize) (widthOfJoint $ shaftSty opts) tWidth = xWidth t' jWidth = xWidth j' t = scaleInvPrim t' unitX # applyStyle (tailSty opts) j = scaleInvPrim j' unitX # applyStyle (colorJoint (opts^.shaftStyle)) -- | Make a trail with the same angles and offset as an arrow with tail width -- tw, head width hw and shaft of tr, such that the magnituted of the shaft -- offset is size. Used for calculating the offset of an arrow. spine :: Trail R2 -> Double -> Double -> Double -> Trail R2 spine tr tw hw size = tS <> tr # scale size <> hS where tSpine = trailFromOffsets [(normalized . tangentAtStart) $ tr] # scale tw hSpine = trailFromOffsets [(normalized . tangentAtEnd) $ tr] # scale hw hS = if hw > 0 then hSpine else mempty tS = if tw > 0 then tSpine else mempty -- | Calculate the amount required to scale a shaft trail so that an arrow with -- head width hw and tail width tw has offset t. scaleFactor :: Trail R2 -> Double -> Double -> Double -> Double scaleFactor tr tw hw t -- Let tv be a vector representing the tail width, i.e. a vector -- of length tw tangent to the trail's start; similarly for hv. -- Let v be the vector offset of the trail. -- -- Then we want to find k such that -- -- || tv + k*v + hv || = t. -- -- We can solve by squaring both sides and expanding the LHS as a -- dot product, resulting in a quadratic in k. = case quadForm (magnitudeSq v) (2* (v <.> (tv ^+^ hv))) (magnitudeSq (tv ^+^ hv) - t*t) of [] -> 1 -- no scale works, just return 1 [s] -> s -- single solution ss -> maximum ss -- we will usually get both a positive and a negative solution; -- return the maximum (i.e. positive) solution where tv = tw *^ (tangentAtStart tr # normalized) hv = hw *^ (tangentAtEnd tr # normalized) v = trailOffset tr -- | @arrow len@ creates an arrow of length @len@ with default -- parameters, starting at the origin and ending at the point -- @(len,0)@. arrow :: Renderable (Path R2) b => Double -> Diagram b R2 arrow len = arrow' def len -- | @arrow' opts len@ creates an arrow of length @len@ using the -- given options, starting at the origin and ending at the point -- @(len,0)@. In particular, it scales the given 'arrowShaft' so -- that the entire arrow has length @len@. arrow' :: Renderable (Path R2) b => ArrowOpts -> Double -> Diagram b R2 arrow' opts len = mkQD' (DelayedLeaf delayedArrow) -- We must approximate the envelope and trace by just drawing the -- arrow from the origin to (len,0) and using its envelope and -- trace. That may not end up being exactly right (if the arrow -- gets scaled, the shaft may get a bit longer or shorter, and so -- on) but it's close enough. (getEnvelope approx) (getTrace approx) mempty mempty where -- Once we learn the global transformation context this arrow is -- drawn in, we can apply it to the origin and (len,0) to find out -- the actual final points between which this arrow should be -- drawn. We need to know this to draw it correctly, since the -- head and tail are scale invariant, and hence the precise points -- between which we need to draw the shaft do not transform -- uniformly as the transformation applied to the entire arrow. -- See https://github.com/diagrams/diagrams-lib/issues/112. delayedArrow da = -- Note we only take the *unfrozen* transformation. The frozen -- transformation *do* affect scale-invariant objects like -- arrowheads, and will still be higher up in the tree (so we -- don't need to apply it here). let (unfrozenTr, globalSty) = option mempty (first unsplitR . untangle) . fst $ da in dArrow globalSty unfrozenTr len unsplitR (M m) = m unsplitR (_ :| m) = m approx = dArrow mempty mempty len -- Build an arrow and set its endpoints to the image under tr of origin and (len,0). dArrow sty tr ln = (h' <> t' <> shaft) # moveOriginBy (tWidth *^ (unit_X # rotate tAngle)) # rotate (direction (q .-. p) ^-^ dir) # moveTo p where p = origin # transform tr q = origin # translateX ln # transform tr -- Use the existing line color for head, tail, and shaft by -- default (can be overridden by explicitly setting headStyle, -- tailStyle, or shaftStyle). globalLC = getLineColor <$> getAttr sty opts' = opts & headStyle %~ maybe id fillColor globalLC & tailStyle %~ maybe id fillColor globalLC & shaftStyle %~ maybe id lineColor globalLC -- Make the head and tail and save their widths. (h, hWidth') = mkHead opts' (t, tWidth') = mkTail opts' rawShaftTrail = opts^.arrowShaft shaftTrail = rawShaftTrail -- rotate it so it is pointing in the positive X direction # rotate (negateV direction (trailOffset rawShaftTrail)) -- apply the context transformation -- in case it includes -- things like flips and shears (the possibility of shears -- is why we must rotate it to a neutral position first) # transform tr -- Adjust the head width and tail width to take gaps into account tWidth = tWidth' + opts^.tailGap hWidth = hWidth' + opts^.headGap -- Calculate the angles that the head and tail should point. tAngle = direction . tangentAtStart $ shaftTrail hAngle = direction . tangentAtEnd $ shaftTrail -- Calculte the scaling factor to apply to the shaft shaftTrail so that the entire -- arrow will be of length len. Then apply it to the shaft and make the -- shaft into a Diagram with using its style. sf = scaleFactor shaftTrail tWidth hWidth (magnitude (q .-. p)) shaftTrail' = shaftTrail # scale sf shaft = strokeT shaftTrail' # applyStyle (shaftSty opts) -- Adjust the head and tail to point in the directions of the shaft ends. h' = h # rotate hAngle # moveTo (origin .+^ shaftTrail' `atParam` domainUpper shaftTrail') t' = t # rotate tAngle -- Find out what direction the arrow is pointing so we can set it back -- to point in the direction unitX when we are done. dir = direction (trailOffset $ spine shaftTrail tWidth hWidth sf) -- | @arrowBetween s e@ creates an arrow pointing from @s@ to @e@ -- with default parameters. arrowBetween :: Renderable (Path R2) b => P2 -> P2 -> Diagram b R2 arrowBetween = arrowBetween' def -- | @arrowBetween' opts s e@ creates an arrow pointing from @s@ to -- @e@ using the given options. In particular, it scales and -- rotates @arrowShaft@ to go between @s@ and @e@, taking head, -- tail, and gaps into account. arrowBetween' :: Renderable (Path R2) b => ArrowOpts -> P2 -> P2 -> Diagram b R2 arrowBetween' opts s e = arrowAt' opts s (e .-. s) -- | Create an arrow starting at s with length and direction determined by -- the vector v. arrowAt :: Renderable (Path R2) b => P2 -> R2 -> Diagram b R2 arrowAt s v = arrowAt' def s v arrowAt' :: Renderable (Path R2) b => ArrowOpts -> P2 -> R2 -> Diagram b R2 arrowAt' opts s v = arrow' opts len # rotate dir # moveTo s where len = magnitude v dir = direction v -- | @arrowV v@ creates an arrow with the direction and magnitude of -- the vector @v@ (with its tail at the origin), using default -- parameters. arrowV :: Renderable (Path R2) b => R2 -> Diagram b R2 arrowV = arrowV' def -- | @arrowV' v@ creates an arrow with the direction and magnitude of -- the vector @v@ (with its tail at the origin). arrowV' :: Renderable (Path R2) b => ArrowOpts -> R2 -> Diagram b R2 arrowV' opts = arrowAt' opts origin -- | Connect two diagrams with a straight arrow. connect :: (Renderable (Path R2) b, IsName n1, IsName n2) => n1 -> n2 -> (Diagram b R2 -> Diagram b R2) connect = connect' def -- | Connect two diagrams with an arbitrary arrow. connect' :: (Renderable (Path R2) b, IsName n1, IsName n2) => ArrowOpts -> n1 -> n2 -> (Diagram b R2 -> Diagram b R2) connect' opts n1 n2 = withName n1 $ \sub1 -> withName n2 $ \sub2 -> let [s,e] = map location [sub1, sub2] in atop (arrowBetween' opts s e) -- | Connect two diagrams at point on the perimeter of the diagrams, choosen -- by angle. connectPerim :: (Renderable (Path R2) b, IsName n1, IsName n2) => n1 -> n2 -> Angle -> Angle -> (Diagram b R2 -> Diagram b R2) connectPerim = connectPerim' def connectPerim' :: (Renderable (Path R2) b, IsName n1, IsName n2) => ArrowOpts -> n1 -> n2 -> Angle -> Angle -> (Diagram b R2 -> Diagram b R2) connectPerim' opts n1 n2 a1 a2 = withName n1 $ \sub1 -> withName n2 $ \sub2 -> let [os, oe] = map location [sub1, sub2] s = fromMaybe os (maxTraceP os (unitX # rotate a1) sub1) e = fromMaybe oe (maxTraceP oe (unitX # rotate a2) sub2) in atop (arrowBetween' opts s e) -- | Draw an arrow from diagram named "n1" to diagram named "n2". The -- arrow lies on the line between the centres of the diagrams, but is -- drawn so that it stops at the boundaries of the diagrams, using traces -- to find the intersection points. connectOutside :: (Renderable (Path R2) b, IsName n1, IsName n2) => n1 -> n2 -> (Diagram b R2 -> Diagram b R2) connectOutside = connectOutside' def connectOutside' :: (Renderable (Path R2) b, IsName n1, IsName n2) => ArrowOpts -> n1 -> n2 -> (Diagram b R2 -> Diagram b R2) connectOutside' opts n1 n2 = withName n1 $ \b1 -> withName n2 $ \b2 -> let v = location b2 .-. location b1 midpoint = location b1 .+^ (v/2) s' = fromMaybe (location b1) $ traceP midpoint (-v) b1 e' = fromMaybe (location b2) $ traceP midpoint v b2 in atop (arrowBetween' opts s' e')