{-# LANGUAGE DeriveDataTypeable         #-}
{-# LANGUAGE DeriveFunctor              #-}
{-# LANGUAGE FlexibleContexts           #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE NoMonomorphismRestriction  #-}
{-# LANGUAGE ScopedTypeVariables        #-}
{-# LANGUAGE StandaloneDeriving         #-}
{-# LANGUAGE TypeFamilies               #-}
{-# LANGUAGE UndecidableInstances       #-}
-----------------------------------------------------------------------------
-- |
-- Module      :  Diagrams.BoundingBox
-- Copyright   :  (c) 2011 diagrams-lib team (see LICENSE)
-- License     :  BSD-style (see LICENSE)
-- Maintainer  :  diagrams-discuss@googlegroups.com
--
-- Bounding boxes are not very compositional (/e.g./ it is not
-- possible to do anything sensible with them under rotation), so they
-- are not used in the diagrams core.  However, they do have their
-- uses; this module provides definitions and functions for working
-- with them.
--
-----------------------------------------------------------------------------

module Diagrams.BoundingBox
       ( -- * Bounding boxes
         BoundingBox()

         -- * Constructing bounding boxes
       , emptyBox, fromCorners, fromPoint, fromPoints
       , boundingBox

         -- * Queries on bounding boxes
       , isEmptyBox
       , getCorners, getAllCorners
       , boxExtents, boxTransform, boxFit
       , contains, contains'
       , inside, inside', outside, outside'

         -- * Operations on bounding boxes
       , union, intersection
       ) where

import           Control.Applicative     ((<$>))
import qualified Data.Foldable           as F
import           Data.Map                (Map, fromDistinctAscList, fromList,
                                          toAscList, toList)

import           Data.Maybe              (fromMaybe)

import           Data.VectorSpace
-- (VectorSpace, Scalar, AdditiveGroup, zeroV, negateV, (^+^), (^-^))
import           Data.Basis              (Basis, HasBasis, basisValue,
                                          decompose, recompose)
import           Data.Monoid             (Monoid (..))
import           Data.Semigroup          (Option (..), Semigroup (..))

import           Data.Data               (Data)
import           Data.Typeable           (Typeable)

import           Diagrams.Core.Envelope  (Enveloped (..), appEnvelope)
import           Diagrams.Core.HasOrigin (HasOrigin (..))
import           Diagrams.Core.Points    (Point (..))
import           Diagrams.Core.Transform (HasLinearMap, Transformable (..),
                                          Transformation (..), (<->))
import           Diagrams.Core.V         (V)

-- Unexported utility newtype

newtype NonEmptyBoundingBox v = NonEmptyBoundingBox (Point v, Point v)
  deriving (Eq, Data, Typeable)

fromNonEmpty :: NonEmptyBoundingBox v -> BoundingBox v
fromNonEmpty = BoundingBox . Option . Just

fromMaybeEmpty :: Maybe (NonEmptyBoundingBox v) -> BoundingBox v
fromMaybeEmpty = maybe emptyBox fromNonEmpty

nonEmptyCorners :: NonEmptyBoundingBox v -> (Point v, Point v)
nonEmptyCorners (NonEmptyBoundingBox x) = x

instance (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v))
    => Semigroup (NonEmptyBoundingBox v) where
  (NonEmptyBoundingBox (ul, uh)) <> (NonEmptyBoundingBox (vl, vh))
    = NonEmptyBoundingBox
    $ mapT toPoint (combineP min ul vl, combineP max uh vh)


-- | A bounding box is an axis-aligned region determined by two points
--   indicating its \"lower\" and \"upper\" corners.  It can also represent
--   an empty bounding box - the points are wrapped in @Maybe@.
newtype BoundingBox v = BoundingBox (Option (NonEmptyBoundingBox v))
  deriving (Eq, Data, Typeable)

deriving instance
  ( HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v)
  ) => Semigroup (BoundingBox v)
deriving instance
  ( HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v)
  ) => Monoid (BoundingBox v)

type instance V (BoundingBox v) = v

-- Map a function on a homogenous 2-tuple. (unexported utility)
mapT :: (a -> b) -> (a, a) -> (b, b)
mapT f (x, y) = (f x, f y)

instance ( VectorSpace v, HasBasis v, Ord (Basis v)
         , AdditiveGroup (Scalar v), Ord (Scalar v)
         )  => HasOrigin (BoundingBox v) where
  moveOriginTo p b
    = fromMaybeEmpty
    ( NonEmptyBoundingBox . mapT (moveOriginTo p) <$> getCorners b )

instance ( InnerSpace v, HasBasis v, Ord (Basis v)
         , AdditiveGroup (Scalar v), Ord (Scalar v), Floating (Scalar v)
         ) => Enveloped (BoundingBox v) where
  getEnvelope = getEnvelope . getAllCorners

instance Show v => Show (BoundingBox v) where
  show
    = maybe "emptyBox" (\(l, u) -> "fromCorners " ++ show l ++ " " ++ show u)
    . getCorners

{- TODO
instance Read v => Read (BoundingBox v) where
  read "emptyBox" = emptyBox
-}

-- | An empty bounding box.  This is the same thing as @mempty@, but it doesn't
--   require the same type constraints that the @Monoid@
emptyBox :: BoundingBox v
emptyBox = BoundingBox $ Option Nothing

-- | Create a bounding box from a point that is component-wise @(<=)@ than the
--   other.  If this is not the case, then @mempty@ is returned.
fromCorners
  :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v))
  => Point v -> Point v -> BoundingBox v
fromCorners l h
  | F.and (combineP (<=) l h) = fromNonEmpty $ NonEmptyBoundingBox (l, h)
  | otherwise = mempty

-- | Create a degenerate bounding \"box\" containing only a single point.
fromPoint
  :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v))
  => Point v -> BoundingBox v
fromPoint p = fromNonEmpty $ NonEmptyBoundingBox (p, p)

-- | Create the smallest bounding box containing all the given points.
fromPoints
  :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v))
  => [Point v] -> BoundingBox v
fromPoints = mconcat . map fromPoint

-- | Create a bounding box for any enveloped object (such as a diagram or path).
boundingBox :: forall a. ( Enveloped a, HasBasis (V a), AdditiveGroup (V a)
                         , Ord (Basis (V a))
                         ) => a -> BoundingBox (V a)
boundingBox a = fromMaybeEmpty $ do
    env <- appEnvelope $ getEnvelope a
    let h = recompose $ map (\v -> (v,          env           $ basisValue v)) us
        l = recompose $ map (\v -> (v, negate . env . negateV $ basisValue v)) us
    return $ NonEmptyBoundingBox (P l, P h)
  where
    -- The units. Might not work if 0-components aren't reported.
    --TODO: Depend on Enum Basis?
    us = map fst $ decompose (zeroV :: V a)

-- | Queries whether the BoundingBox is empty.
isEmptyBox :: BoundingBox v -> Bool
isEmptyBox (BoundingBox (Option Nothing)) = True
isEmptyBox _ = False

-- | Gets the lower and upper corners that define the bounding box.
getCorners :: BoundingBox v -> Maybe (Point v, Point v)
getCorners (BoundingBox p) = nonEmptyCorners <$> getOption p

-- | Computes all of the corners of the bounding box.
getAllCorners :: (HasBasis v, AdditiveGroup (Scalar v), Ord (Basis v))
              => BoundingBox v -> [Point v]
getAllCorners (BoundingBox (Option Nothing)) = []
getAllCorners (BoundingBox (Option (Just (NonEmptyBoundingBox (l, u)))))
  = map (P . recompose)
  -- Enumerate all combinations of selections of lower / higher values.
  . mapM (\(b, (l', u')) -> [(b, l'), (b, u')])
  -- List of [(basis, (lower, upper))]
  . toList
  $ combineP (,) l u

-- | Get the size of the bounding box - the vector from the (component-wise)
--   lesser point to the greater point.
boxExtents :: (AdditiveGroup v) => BoundingBox v -> v
boxExtents = maybe zeroV (\(P l, P h) -> h ^-^ l) . getCorners

-- | Create a transformation mapping points from one bounding box to the other.
boxTransform :: (AdditiveGroup v, HasLinearMap v,
                 Fractional (Scalar v), AdditiveGroup (Scalar v), Ord (Basis v))
             => BoundingBox v -> BoundingBox v -> Maybe (Transformation v)
boxTransform u v = do
    ((P ul), _) <- getCorners u
    ((P vl), _) <- getCorners v
    let lin_map = box_scale (v, u) <-> box_scale (u, v)
        box_scale = combineV' (*) . uncurry (combineV' (/)) . mapT boxExtents
        combineV' f x = toVector . combineV f x
    return $ Transformation lin_map lin_map (vl ^-^ box_scale (v, u) ul)

-- | Transforms an enveloped thing to fit within a @BoundingBox@.  If it's
--   empty, then the result is also @mempty@.
boxFit :: (Enveloped a, Transformable a, Monoid a, Ord (Basis (V a)))
       => BoundingBox (V a) -> a -> a
boxFit b x = maybe mempty (`transform` x) $ boxTransform (boundingBox x) b

-- | Check whether a point is contained in a bounding box (including its edges).
contains
  :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v))
  => BoundingBox v -> Point v -> Bool
contains b p = maybe False check $ getCorners b
  where
    check (l, h) = F.and (combineP (<=) l p)
                && F.and (combineP (<=) p h)

-- | Check whether a point is /strictly/ contained in a bounding box.
contains'
  :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v))
  => BoundingBox v -> Point v -> Bool
contains' b p = maybe False check $ getCorners b
  where
    check (l, h) = F.and (combineP (<) l p)
                && F.and (combineP (<) p h)

-- | Test whether the first bounding box is contained inside
--   the second.
inside
  :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v))
  => BoundingBox v -> BoundingBox v -> Bool
inside u v = fromMaybe False $ do
  (ul, uh) <- getCorners u
  (vl, vh) <- getCorners v
  return $ F.and (combineP (>=) ul vl)
        && F.and (combineP (<=) uh vh)

-- | Test whether the first bounding box is /strictly/ contained
--   inside the second.
inside'
  :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v))
  => BoundingBox v -> BoundingBox v -> Bool
inside' u v = fromMaybe False $ do
  (ul, uh) <- getCorners u
  (vl, vh) <- getCorners v
  return $ F.and (combineP (>) ul vl)
        && F.and (combineP (<) uh vh)

-- | Test whether the first bounding box lies outside the second
--   (although they may intersect in their boundaries).
outside
  :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v))
  => BoundingBox v -> BoundingBox v -> Bool
outside u v = fromMaybe True $ do
  (ul, uh) <- getCorners u
  (vl, vh) <- getCorners v
  return $ F.or (combineP (<=) uh vl)
        || F.or (combineP (>=) ul vh)

-- | Test whether the first bounding box lies /strictly/ outside the second
--   (they do not intersect at all).
outside'
  :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v))
  => BoundingBox v -> BoundingBox v -> Bool
outside' u v = fromMaybe True $ do
  (ul, uh) <- getCorners u
  (vl, vh) <- getCorners v
  return $ F.or (combineP (<) uh vl)
        || F.or (combineP (>) ul vh)

-- | Form the largest bounding box contained within this given two
--   bounding boxes, or @Nothing@ if the two bounding boxes do not
--   overlap at all.
intersection
  :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v))
  => BoundingBox v -> BoundingBox v -> BoundingBox v
intersection u v = maybe mempty (uncurry fromCorners) $ do
  (ul, uh) <- getCorners u
  (vl, vh) <- getCorners v
  return $ mapT toPoint (combineP max ul vl, combineP min uh vh)

-- | Form the smallest bounding box containing the given two bound union.  This
--   function is just an alias for @mappend@.
union :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v))
      => BoundingBox v -> BoundingBox v -> BoundingBox v
union = mappend

-- internals using Map (Basis v) (Scalar v)
-- probably paranoia, but decompose might not always
--   1. contain basis elements whose component is zero
--   2. have basis elements in the same order

fromVector :: (HasBasis v, Ord (Basis v)) => v -> Map (Basis v) (Scalar v)
fromVector = fromList . decompose

toVector :: HasBasis v => Map (Basis v) (Scalar v) -> v
toVector = recompose . toList

toPoint :: HasBasis v => Map (Basis v) (Scalar v) -> Point v
toPoint = P . toVector

combineV :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v))
         => (Scalar v -> Scalar v -> a) -> v -> v -> Map (Basis v) a
combineV f u v = combineDefault zeroV zeroV f (fromVector u) (fromVector v)

combineP :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v))
         => (Scalar v -> Scalar v -> a) -> Point v -> Point v -> Map (Basis v) a
combineP f (P u) (P v) = combineV f u v

combineDefault :: Ord k => a -> b -> (a -> b -> c) -> Map k a -> Map k b -> Map k c
combineDefault a b f = combine g
  where
    g Nothing  Nothing  = f a b
    g Nothing  (Just y) = f a y
    g (Just x) Nothing  = f x b
    g (Just x) (Just y) = f x y

combine :: Ord k => (Maybe a -> Maybe b -> c) -> Map k a -> Map k b -> Map k c
combine f am bm = fromDistinctAscList $ merge (toAscList am) (toAscList bm)
  where
    merge [] [] = []
    merge ((x,a):xs) [] = (x, f (Just a) Nothing) : merge xs []
    merge [] ((y,b):ys) = (y, f Nothing (Just b)) : merge [] ys
    merge xs0@((x,a):xs) ys0@((y,b):ys) = case compare x y of
      LT -> (x, f (Just a) Nothing ) : merge xs ys0
      EQ -> (x, f (Just a) (Just b)) : merge xs ys
      GT -> (y, f Nothing  (Just b)) : merge xs0 ys