#if __GLASGOW_HASKELL__ >= 702
#endif
module Data.Distributive
( Distributive(..)
, cotraverse
, comapM
, fmapCollect
) where
import Control.Applicative
import Control.Applicative.Backwards
import Control.Monad (liftM)
#if __GLASGOW_HASKELL__ < 707
import Control.Monad.Instances ()
#endif
import Control.Monad.Trans.Identity
import Control.Monad.Trans.Reader
import Data.Coerce
import Data.Functor.Compose
import Data.Functor.Identity
import Data.Functor.Product
import Data.Functor.Reverse
import qualified Data.Monoid as Monoid
import Data.Orphans ()
#if MIN_VERSION_base(4,4,0)
import Data.Complex
#endif
#if __GLASGOW_HASKELL__ >= 707 || defined(MIN_VERSION_tagged)
import Data.Proxy
#endif
#if __GLASGOW_HASKELL__ >= 800 || defined(MIN_VERSION_semigroups)
import qualified Data.Semigroup as Semigroup
#endif
#ifdef MIN_VERSION_tagged
import Data.Tagged
#endif
#if __GLASGOW_HASKELL__ >= 702
import GHC.Generics (U1(..), (:*:)(..), (:.:)(..), Par1(..), Rec1(..), M1(..))
#endif
#ifdef HLINT
#endif
class Functor g => Distributive g where
#if __GLASGOW_HASKELL__ >= 707
#endif
distribute :: Functor f => f (g a) -> g (f a)
distribute = collect id
collect :: Functor f => (a -> g b) -> f a -> g (f b)
collect f = distribute . fmap f
distributeM :: Monad m => m (g a) -> g (m a)
distributeM = fmap unwrapMonad . distribute . WrapMonad
collectM :: Monad m => (a -> g b) -> m a -> g (m b)
collectM f = distributeM . liftM f
cotraverse :: (Distributive g, Functor f) => (f a -> b) -> f (g a) -> g b
cotraverse f = fmap f . distribute
comapM :: (Distributive g, Monad m) => (m a -> b) -> m (g a) -> g b
comapM f = fmap f . distributeM
instance Distributive Identity where
collect = coerce (fmap :: (a -> b) -> f a -> f b)
:: forall a b f . Functor f => (a -> Identity b) -> f a -> Identity (f b)
distribute = Identity . fmap runIdentity
#if __GLASGOW_HASKELL__ >= 707 || defined(MIN_VERSION_tagged)
instance Distributive Proxy where
collect _ _ = Proxy
distribute _ = Proxy
#endif
#if defined(MIN_VERSION_tagged)
instance Distributive (Tagged t) where
collect = coerce (fmap :: (a -> b) -> f a -> f b)
:: forall a b f . Functor f => (a -> Tagged t b) -> f a -> Tagged t (f b)
distribute = Tagged . fmap unTagged
#endif
instance Distributive ((->)e) where
distribute a e = fmap ($e) a
collect f q e = fmap (flip f e) q
instance Distributive g => Distributive (ReaderT e g) where
distribute a = ReaderT $ \e -> collect (flip runReaderT e) a
collect f x = ReaderT $ \e -> collect (\a -> runReaderT (f a) e) x
instance Distributive g => Distributive (IdentityT g) where
collect = coerce (collect :: (a -> g b) -> f a -> g (f b))
:: forall a b f . Functor f => (a -> IdentityT g b) -> f a -> IdentityT g (f b)
instance (Distributive f, Distributive g) => Distributive (Compose f g) where
distribute = Compose . fmap distribute . collect getCompose
collect f = Compose . fmap distribute . collect (coerce f)
instance (Distributive f, Distributive g) => Distributive (Product f g) where
distribute wp = Pair (collect fstP wp) (collect sndP wp) where
fstP (Pair a _) = a
sndP (Pair _ b) = b
instance Distributive f => Distributive (Backwards f) where
distribute = Backwards . collect forwards
collect = coerce (collect :: (a -> f b) -> g a -> f (g b))
:: forall g a b . Functor g
=> (a -> Backwards f b) -> g a -> Backwards f (g b)
instance Distributive f => Distributive (Reverse f) where
distribute = Reverse . collect getReverse
collect = coerce (collect :: (a -> f b) -> g a -> f (g b))
:: forall g a b . Functor g
=> (a -> Reverse f b) -> g a -> Reverse f (g b)
instance Distributive Monoid.Dual where
collect = coerce (fmap :: (a -> b) -> f a -> f b)
:: forall f a b . Functor f
=> (a -> Monoid.Dual b) -> f a -> Monoid.Dual (f b)
distribute = Monoid.Dual . fmap Monoid.getDual
instance Distributive Monoid.Product where
collect = coerce (fmap :: (a -> b) -> f a -> f b)
:: forall f a b . Functor f
=> (a -> Monoid.Product b) -> f a -> Monoid.Product (f b)
distribute = Monoid.Product . fmap Monoid.getProduct
instance Distributive Monoid.Sum where
collect = coerce (fmap :: (a -> b) -> f a -> f b)
:: forall f a b . Functor f
=> (a -> Monoid.Sum b) -> f a -> Monoid.Sum (f b)
distribute = Monoid.Sum . fmap Monoid.getSum
#if __GLASGOW_HASKELL__ >= 800 || defined(MIN_VERSION_semigroups)
instance Distributive Semigroup.Min where
collect = coerce (fmap :: (a -> b) -> f a -> f b)
:: forall f a b . Functor f
=> (a -> Semigroup.Min b) -> f a -> Semigroup.Min (f b)
distribute = Semigroup.Min . fmap Semigroup.getMin
instance Distributive Semigroup.Max where
collect = coerce (fmap :: (a -> b) -> f a -> f b)
:: forall f a b . Functor f
=> (a -> Semigroup.Max b) -> f a -> Semigroup.Max (f b)
distribute = Semigroup.Max . fmap Semigroup.getMax
instance Distributive Semigroup.First where
collect = coerce (fmap :: (a -> b) -> f a -> f b)
:: forall f a b . Functor f
=> (a -> Semigroup.First b) -> f a -> Semigroup.First (f b)
distribute = Semigroup.First . fmap Semigroup.getFirst
instance Distributive Semigroup.Last where
collect = coerce (fmap :: (a -> b) -> f a -> f b)
:: forall f a b . Functor f
=> (a -> Semigroup.Last b) -> f a -> Semigroup.Last (f b)
distribute = Semigroup.Last . fmap Semigroup.getLast
#endif
#if MIN_VERSION_base(4,4,0)
instance Distributive Complex where
distribute wc = fmap realP wc :+ fmap imagP wc where
realP (r :+ _) = r
imagP (_ :+ i) = i
#endif
fmapCollect :: forall f a b . Distributive f => (a -> b) -> f a -> f b
fmapCollect = coerce (collect :: (a -> Identity b) -> f a -> Identity (f b))
#if __GLASGOW_HASKELL__ >= 702
instance Distributive U1 where
distribute _ = U1
instance (Distributive a, Distributive b) => Distributive (a :*: b) where
distribute f = collect fstP f :*: collect sndP f where
fstP (l :*: _) = l
sndP (_ :*: r) = r
instance (Distributive a, Distributive b) => Distributive (a :.: b) where
distribute = Comp1 . fmap distribute . collect unComp1
collect f = Comp1 . fmap distribute . collect (coerce f)
instance Distributive Par1 where
distribute = Par1 . fmap unPar1
collect = coerce (fmap :: (a -> b) -> f a -> f b)
:: forall f a b . Functor f => (a -> Par1 b) -> f a -> Par1 (f b)
instance Distributive f => Distributive (Rec1 f) where
distribute = Rec1 . collect unRec1
collect = coerce (collect :: (a -> f b) -> g a -> f (g b))
:: forall g a b . Functor g
=> (a -> Rec1 f b) -> g a -> Rec1 f (g b)
instance Distributive f => Distributive (M1 i c f) where
distribute = M1 . collect unM1
collect = coerce (collect :: (a -> f b) -> g a -> f (g b))
:: forall g a b . Functor g
=> (a -> M1 i c f b) -> g a -> M1 i c f (g b)
#endif