;;;;; ;;;;; ;;;;; Term Rewriting ;;;;; ;;;;; (define $math-normalize1 (lambda [$x] (if (integer? x) x (let {[$ret ((capply compose (map 2#%1 (filter 2#(%2 x) rewrite-rules1))) x)]} ret)))) ; (let {[$ret ((capply compose (map 2#%1 (filter 2#(%2 fn x) rewrite-rules1))) (debug x))]} (debug ret))))) (define $rewrite-rules1 { [id 1##t] [rewrite-rule-for-i 1#(contain-symbol? i %1)] [rewrite-rule-for-w-term 1#(contain-symbol? w %1)] [rewrite-rule-for-rtu-term 1#(contain-function? rtu %1)] [rewrite-rule-for-w-poly 1#(contain-symbol? w %1)] [rewrite-rule-for-rtu-poly 1#(contain-function? rtu %1)] [rewrite-rule-for-sqrt 1#(contain-function? sqrt %1)] [rewrite-rule-for-rt 1#(contain-function? rt %1)] ; [rewrite-rule-for-cos-and-sin 1#(or (contain-function-with-order? cos 2 %1) (contain-function-with-order? sin 2 %1))] [rewrite-rule-for-cos-to-sin 1#(contain-function-with-order? cos 2 %1)] }) ;; ;; i ;; (define $rewrite-rule-for-i rewrite-rule-for-i-term) (define $rewrite-rule-for-i-term (map-terms rewrite-rule-for-i-term' $)) (define $rewrite-rule-for-i-term' (lambda [$term] (match term math-expr {[(* $a ,i^(& ?even? $k) $r) (*' a (**' -1 (quotient k 2)) r)] [(* $a ,i^$k $r) (*' a (**' -1 (quotient k 2)) r i)] [_ term]}))) ;; ;; w ;; (define $rewrite-rule-for-w (compose rewrite-rule-for-w-term rewrite-rule-for-w-poly $)) (define $rewrite-rule-for-w-term (map-terms rewrite-rule-for-w-term' $)) (define $rewrite-rule-for-w-poly (map-polys rewrite-rule-for-w-poly' $)) (define $rewrite-rule-for-w-term' (lambda [$term] (match term math-expr {[(* $a ,w^(& ?(gte? $ 3) $k) $r) (*' a r (**' w (remainder k 3)))] [_ term]}))) (define $rewrite-rule-for-w-poly' (lambda [$poly] (match poly math-expr {[(+ (* $a ,w^,2 $mr) (* $b ,w ,mr) $pr) (rewrite-rule-for-w-poly' (+' pr (*' -1 a mr) (*' (- b a) mr w) ))] [_ poly]}))) ;; ;; rtu (include i and w) ;; (define $rewrite-rule-for-rtu (compose (map-terms rewrite-rule-for-rtu-term $) (map-polys rewrite-rule-for-rtu-poly $) )) (define $rewrite-rule-for-rtu-term (map-terms rewrite-rule-for-rtu-term' $)) (define $rewrite-rule-for-rtu-poly (map-polys rewrite-rule-for-rtu-poly' $)) (define $rewrite-rule-for-rtu-term' (lambda [$term] (match term math-expr {[(* $a (,rtu $n)^(& ?(gte? $ n) $k) $r) (*' a (**' (rtu n) (remainder k n)) r)] [_ term]}))) (define $rewrite-rule-for-rtu-poly' (lambda [$poly] (match poly math-expr { [(+ (* $a (,rtu $n)^,1 $mr) (loop $i [2 ,(- n 1)] (+ (* ,a ,(rtu n)^,i ,mr) ...) $pr)) (rewrite-rule-for-rtu-poly' (+' pr (*' -1 a mr)))] [_ poly]}))) ;; ;; sqrt ;; (define $rewrite-rule-for-sqrt (map-terms rewrite-rule-for-sqrt-term $)) (define $rewrite-rule-for-sqrt-term (lambda [$term] (match term math-expr {[(* $a (,sqrt $x) (,sqrt ,x) $r) (rewrite-rule-for-sqrt (*' a x r))] [(* $a (,sqrt (& ?term? $x)) (,sqrt (& ?term? $y)) $r) (let* {[$d (gcd x y)] [[$a1 $x1] (from-monomial (/ x d))] [[$a2 $y1] (from-monomial (/ y d))]} (*' a d (sqrt (*' a1 a2)) (sqrt x1) (sqrt y1) r))] [_ term]}))) ;; ;; rt (include sqrt) ;; (define $rewrite-rule-for-rt (map-terms rewrite-rule-for-rt-term $)) (define $rewrite-rule-for-rt-term (lambda [$term] (match term math-expr {[(* $a (,rt $n $x)^(& ?(gte? $ n) $k) $r) (*' a (**' x (quotient k n)) (**' (rt n x) (remainder k n)) r)] [_ term]}))) ;; ;; cos, sin ;; ;(define $rewrite-rule-for-cos-and-sin 1#(rewrite-rule-for-cos-and-sin-expr (map-polys rewrite-rule-for-cos-and-sin-poly %1))) (define $rewrite-rule-for-cos-and-sin 1#(map-polys rewrite-rule-for-cos-and-sin-poly %1)) (define $rewrite-rule-for-cos-and-sin-expr (lambda [$expr] (match [expr expr] [math-expr math-expr] {[[
(|
)] (rewrite-rule-for-cos-and-sin-expr (/' (+' (*' a (-' (cos (/ 慮 2))^2 (sin (/ 慮 2))^2) mr) pr1) pr2))] [[
(|
)] (rewrite-rule-for-cos-and-sin-expr (/' (+' (*' (*' a 2) (*' (cos (/ 慮 2)) (sin (/ 慮 2))) mr) pr1) pr2))] [[
(|
)] (rewrite-rule-for-cos-and-sin-expr (/' pr2 (+' (*' a (-' (cos (/ 慮 2))^2 (sin (/ 慮 2))^2) mr) pr1)))] [[
(|
)] (rewrite-rule-for-cos-and-sin-expr (/' pr2 (+' (*' (*' a 2) (*' (cos (/ 慮 2)) (sin (/ 慮 2))) mr) pr1)))] [_ expr]}))) (define $rewrite-rule-for-cos-and-sin-poly (lambda [$poly] (match poly math-expr {[(+ (* $a (,cos $慮)^,2 $mr) (* ,a (,sin ,慮)^,2 ,mr) $pr) (rewrite-rule-for-cos-and-sin-poly (+' pr (*' a mr)))] [(+ (* $a $mr) (* ,(* -1 a) (,sin $慮)^,2 ,mr) $pr) (rewrite-rule-for-cos-and-sin-poly (+' pr (*' a (cos 慮)^2 mr)))] [(+ (* $a $mr) (* ,(* -1 a) (,cos $慮)^,2 ,mr) $pr) (rewrite-rule-for-cos-and-sin-poly (+' pr (*' a (sin 慮)^2 mr)))] [_ poly]}))) (define $rewrite-rule-for-cos-to-sin 1#(map-terms rewrite-rule-for-cos-to-sin-term' %1)) (define $rewrite-rule-for-cos-to-sin-term' (lambda [$term] (match term math-expr {[(* $a (,cos $θ)^,2 $mr) (*' a (-' 1 (sin θ)^2) (rewrite-rule-for-cos-to-sin-term' mr))] [_ term]}))) ;; ;; d ;; (define $rewrite-rule-for-d (map-terms rewrite-rule-for-d-term $)) (define $rewrite-rule-for-d-term (lambda [$term] (match term math-expr {[(* _ (,d _) (,d _) _) 0] [_ term]}))) ;; ;; ∂/∂ ;; (define $rewrite-rule-for-∂/∂ (map-polys rewrite-rule-for-∂/∂-poly $)) (define $rewrite-rule-for-∂/∂-poly (lambda [$poly] (match poly math-expr {[(+ (* $a ) $args>^$n $mr) (* $b ,args>^,n ,mr) $pr) (+ (* (+ a b) (`g args)^n mr) pr)] [_ poly]}))) (define $rewrite-rule-for-cos-to-sin-term' (lambda [$term] (match term math-expr {[(* $a (,cos $θ)^,2 $mr) (*' a (-' 1 (sin θ)^2) (rewrite-rule-for-cos-to-sin-term' mr))] [_ term]}))) ;; ;; d ;; (define $rewrite-rule-for-d (map-terms rewrite-rule-for-d-term $)) (define $rewrite-rule-for-d-term (lambda [$term] (match term math-expr {[(* _ (,d _) (,d _) _) 0] [_ term]}))) ;; ;; ∂/∂ ;; (define $rewrite-rule-for-∂/∂ (map-polys rewrite-rule-for-∂/∂-poly $)) (define $rewrite-rule-for-∂/∂-poly (lambda [$poly] (match poly math-expr {[(+ (* $a ) $args>^$n $mr) (* $b ,args>^,n ,mr) $pr) (+ (* (+ a b) (`g args)^n mr) pr)] [_ poly]})))