module Data.EnumMapMap.Lazy (
emptySubTrees,
(:&)(..), K(..), IsKey, SubKey, Result,
d1, d2, d3, d4, d5, d6, d7, d8, d9, d10,
EnumMapMap,
size,
null,
member,
lookup,
empty,
singleton,
insert,
insertWith,
insertWithKey,
delete,
alter,
union,
unionWith,
unionWithKey,
unions,
unionsWith,
difference,
differenceWith,
differenceWithKey,
differenceSet,
intersection,
intersectionWith,
intersectionWithKey,
intersectSet,
map,
mapWithKey,
mapMaybe,
mapMaybeWithKey,
traverseWithKey,
foldr,
foldrWithKey,
toList,
fromList,
keys,
elems,
keysSet,
fromSet,
findMin,
minViewWithKey,
deleteFindMin,
toK,
toS,
splitKey,
joinKey,
unsafeJoinKey
) where
import Prelude hiding (lookup,map,filter,foldr,foldl,null,init)
import Control.Applicative ((<$>))
import Control.DeepSeq (NFData(rnf))
import Data.Bits
import qualified Data.Foldable as FOLD
import Data.SafeCopy
import Data.Semigroup
import Data.Typeable
import Data.EnumMapMap.Base
import qualified Data.EnumMapSet.Base as EMS
newtype K k = K k
deriving (Show, Eq)
instance (Enum k) => MkNestedPair (K k) v where
type NestedPair (K k) v = (Int, v)
nestedPair (K k) v = (fromEnum k, v)
unNestedPair (k, v) = (K $ toEnum k, v)
instance (Enum k, Eq k) => IsKey (K k) where
newtype EnumMapMap (K k) v = KEC (EMM k v)
emptySubTrees e@(KEC emm) =
case emm of
Nil -> False
_ -> emptySubTrees_ e
emptySubTrees_ (KEC emm) = go emm
where
go t = case t of
Bin _ _ l r -> go l || go r
Tip _ _ -> False
Nil -> True
removeEmpties = id
unsafeJoinKey (KEC emm) = KCC emm
empty = KEC Nil
null (KEC t) = case t of
Nil -> True
_ -> False
size (KEC t) = go t
where
go (Bin _ _ l r) = go l + go r
go (Tip _ _) = 1
go Nil = 0
alter f !(K key') (KEC emm) = KEC $ go emm
where
go t = case t of
Bin p m l r
|nomatch key p m -> case f Nothing of
Nothing -> t
Just x -> join key (Tip key x) p t
| zero key m -> bin p m (go l) r
| otherwise -> bin p m l (go r)
Tip ky y
| key == ky -> case f (Just y) of
Just x -> Tip ky x
Nothing -> Nil
| otherwise -> case f Nothing of
Just x -> join key (Tip key x) ky t
Nothing -> Tip ky y
Nil -> case f Nothing of
Just x -> Tip key x
Nothing -> Nil
where
key = fromEnum key'
mapWithKey f (KEC emm) = KEC $ mapWithKey_ (f . K) emm
mapMaybeWithKey f (KEC emm) = KEC $ go emm
where
go (Bin p m l r) = bin p m (go l) (go r)
go (Tip k x) = case f (K $! toEnum k) x of
Just y -> Tip k y
Nothing -> Nil
go Nil = Nil
traverseWithKey f (KEC emm) = KEC <$> traverseWithKey_ (\k -> f $! K k) emm
foldr f init (KEC emm) =
case emm of Bin _ m l r | m < 0 -> go (go init l) r
| otherwise -> go (go init r) l
_ -> go init emm
where
go z' Nil = z'
go z' (Tip _ x) = f x z'
go z' (Bin _ _ l r) = go (go z' r) l
foldrWithKey f init (KEC emm) = foldrWithKey_ (f . K) init emm
keysSet (KEC emm) = EMS.KSC $ go emm
where
go Nil = EMS.Nil
go (Tip kx _) = EMS.Tip (EMS.prefixOf kx) (EMS.bitmapOf kx)
go (Bin p m l r)
| m .&. EMS.suffixBitMask == 0 = EMS.Bin p m (go l) (go r)
| otherwise = EMS.Tip (p .&. EMS.prefixBitMask)
(computeBm (computeBm 0 l) r)
where
computeBm !acc (Bin _ _ l' r') = computeBm (computeBm acc l') r'
computeBm !acc (Tip kx _) = acc .|. EMS.bitmapOf kx
computeBm !acc Nil = acc
fromSet f (EMS.KSC emm) = KEC $ fromSet_ (f . K . toEnum) emm
findMin (KEC emm) =
case emm of
Nil -> error "findMin: no minimal element"
Tip k v -> (K $ toEnum k, v)
Bin _ m l r
| m < 0 -> go r
| otherwise -> go l
where go (Tip k v) = (K $ toEnum k, v)
go (Bin _ _ l' _) = go l'
go Nil = error "findMin: Nil"
minViewWithKey (KEC emm) =
goat emm >>= \(r, emm') -> return (r, KEC emm')
where
goat t =
case t of Nil -> Nothing
Bin p m l r | m < 0 ->
case go r of
(result, r') ->
Just (result, bin p m l r')
_ -> Just (go t)
go (Bin p m l r) = case go l of
(result, l') -> (result, bin p m l' r)
go (Tip k y) = ((K $ toEnum k, y), Nil)
go Nil = error "minViewWithKey Nil"
union (KEC emm1) (KEC emm2) = KEC $ mergeWithKey' Bin const id id emm1 emm2
unionWithKey f (KEC emm1) (KEC emm2) =
KEC $ mergeWithKey' Bin go id id emm1 emm2
where
go = \(Tip k1 x1) (Tip _ x2) ->
Tip k1 $ f (K $ toEnum k1) x1 x2
difference (KEC emm1) (KEC emm2) =
KEC $ mergeWithKey' bin (\_ _ -> Nil) id (const Nil) emm1 emm2
differenceWithKey f (KEC emm1) (KEC emm2) =
KEC $ mergeWithKey' bin combine id (const Nil) emm1 emm2
where
combine = \(Tip k1 x1) (Tip _ x2)
-> case f (K $ toEnum k1) x1 x2 of
Nothing -> Nil
Just x -> Tip k1 x
intersection (KEC emm1) (KEC emm2) =
KEC $ mergeWithKey' bin const (const Nil) (const Nil) emm1 emm2
intersectionWithKey f (KEC emm1) (KEC emm2) =
KEC $ mergeWithKey' bin go (const Nil) (const Nil) emm1 emm2
where
go = \(Tip k1 x1) (Tip _ x2) ->
Tip k1 $ f (K $ toEnum k1) x1 x2
equal (KEC emm1) (KEC emm2) = emm1 == emm2
nequal (KEC emm1) (KEC emm2) = emm1 /= emm2
instance (Show v) => Show (EnumMapMap (K k) v) where
show (KEC emm) = show emm
instance NFData v => NFData (EnumMapMap (K k) v) where
rnf (KEC emm) = go emm
where
go Nil = ()
go (Tip _ v) = rnf v
go (Bin _ _ l r) = go l `seq` go r
instance (NFData k) => NFData (K k)
where
rnf (K k) = rnf k
instance (Eq k, Enum k) => FOLD.Foldable (EnumMapMap (K k)) where
fold (KEC emm) = go emm
where
go Nil = mempty
go (Tip _ v) = v
go (Bin _ _ l r) = go l `mappend` go r
foldr = foldr
foldMap f (KEC emm) = go emm
where
go Nil = mempty
go (Tip _ v) = f v
go (Bin _ _ l r) = go l `mappend` go r
instance HasSKey (K k) where
type Skey (K k) = EMS.S k
toS (K !k) = EMS.S k
toK (EMS.S !k) = K k
deriving instance Typeable1 K
instance (Enum k) => SafeCopy (K k) where
getCopy = contain $ do
k <- safeGet
return $ K $ toEnum k
putCopy (K k) = contain $ safePut $ fromEnum k
errorTypeName _ = "K"
instance (SafeCopy (K k), SafeCopy v, IsKey (K k),
Result (K k) (K k) v ~ v, SubKey (K k) (K k) v) =>
SafeCopy (EnumMapMap (K k) v) where
getCopy = contain $ fmap fromList safeGet
putCopy = contain . safePut . toList
errorTypeName _ = "EnumMapMap K"
type instance Plus (K k1) k2 = k1 :& k2
instance IsSplit (k :& t) Z where
type Head (k :& t) Z = K k
type Tail (k :& t) Z = t
splitKey Z (KCC emm) = KEC emm
instance (Enum k1, k1 ~ k2) => SubKey (K k1) (k2 :& t2) v where
type Result (K k1) (k2 :& t2) v = EnumMapMap t2 v
member (K key) (KCC emm) = member_ (fromEnum key) emm
singleton !(K key) = KCC . Tip (fromEnum key)
lookup !(K key') (KCC emm) = lookup_ (fromEnum key') emm
insert !(K key') val (KCC emm) = KCC $ insert_ (fromEnum key') val emm
insertWithKey f !k@(K key') val (KCC emm) =
KCC $ insertWK (f k) (fromEnum key') val emm
delete !(K key') (KCC emm) = KCC $ delete_ (fromEnum key') emm
instance (Enum k) => SubKey (K k) (K k) v where
type Result (K k) (K k) v = v
member (K key) (KEC emm) = member_ (fromEnum key) emm
singleton !(K key) = KEC . Tip (fromEnum key)
lookup (K key') (KEC emm) = lookup_ (fromEnum key') emm
insert !(K key') val (KEC emm) = KEC $ insert_ (fromEnum key') val emm
insertWithKey f !k@(K key') val (KEC emm) =
KEC $ insertWK (f k) (fromEnum key') val emm
delete !(K key') (KEC emm) = KEC $ delete_ (fromEnum key') emm
instance (Enum k1, k1 ~ k2) => SubKeyS (k1 :& t) (EMS.S k2) where
intersectSet (KCC emm) (EMS.KSC ems) = KCC $ intersectSet_ emm ems
differenceSet (KCC emm) (EMS.KSC ems) = KCC $ differenceSet_ emm ems
instance (Enum k) => SubKeyS (K k) (EMS.S k) where
intersectSet (KEC emm) (EMS.KSC ems) = KEC $ intersectSet_ emm ems
differenceSet (KEC emm) (EMS.KSC ems) = KEC $ differenceSet_ emm ems
member_ :: Key -> EMM k v -> Bool
member_ key = go
where
go t = case t of
Bin _ m l r -> if zero key m then go l else go r
Tip kx _ -> key == kx
Nil -> False
lookup_ :: Key -> EMM k v -> Maybe v
lookup_ !key emm =
case emm of
Bin _ m l r
| zero key m -> lookup_ key l
| otherwise -> lookup_ key r
Tip kx x -> if kx == key then Just x else Nothing
Nil -> Nothing
insert_ :: Key -> v -> EMM k v -> EMM k v
insert_ !key val = go
where
go emm =
case emm of
Bin p m l r
| nomatch key p m -> join key (Tip key val) p emm
| zero key m -> Bin p m (go l) r
| otherwise -> Bin p m l (go r)
Tip ky _
| key == ky -> Tip key val
| otherwise -> join key (Tip key val) ky emm
Nil -> Tip key val
insertWK :: (v -> v -> v) -> Key -> v -> EMM k v -> EMM k v
insertWK f !key val = go
where
go emm =
case emm of
Bin p m l r
| nomatch key p m -> join key (Tip key val) p emm
| zero key m -> Bin p m (go l) r
| otherwise -> Bin p m l (go r)
Tip ky y
| key == ky -> Tip key (f val y)
| otherwise -> join key (Tip key val) ky emm
Nil -> Tip key val
delete_ :: Key -> EMM k v -> EMM k v
delete_ !key emm =
case emm of
Bin p m l r | nomatch key p m -> emm
| zero key m -> bin p m (delete_ key l) r
| otherwise -> bin p m l (delete_ key r)
Tip ky _ | key == ky -> Nil
| otherwise -> emm
Nil -> Nil
fromSet_ :: (Key -> v) -> EMS.EMS k -> EMM k v
fromSet_ f = go
where
go EMS.Nil = Nil
go (EMS.Bin p m l r) = Bin p m (go l) (go r)
go (EMS.Tip key bm) = buildTree f key bm (EMS.suffixBitMask + 1)
buildTree g !prefix !bmask bits =
case bits of
0 -> Tip prefix (f prefix)
_ -> case intFromNat (natFromInt bits `shiftRL` 1) of
bits2 | bmask .&. ((1 `shiftLL` bits2) 1) == 0 ->
buildTree g (prefix + bits2)
(bmask `shiftRL` bits2) bits2
| (bmask `shiftRL` bits2) .&.
((1 `shiftLL` bits2) 1) == 0 ->
buildTree g prefix bmask bits2
| otherwise ->
Bin prefix bits2
(buildTree g prefix bmask bits2)
(buildTree g (prefix + bits2)
(bmask `shiftRL` bits2)
bits2)
intersectSet_ :: EMM k v -> EMS.EMS k -> EMM k v
intersectSet_ emm ems =
mergeWithKey' bin const (const Nil) (const Nil) emm ems'
where ems' = fromSet_ (const ()) ems
differenceSet_ :: EMM k v -> EMS.EMS k -> EMM k v
differenceSet_ emm ems =
mergeWithKey' bin (\_ _ -> Nil) id (const Nil) emm ems'
where ems' = fromSet_ (const ()) ems