{- Copyright (C) 2011 Dr. Alistair Ward This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. -} {- | [@AUTHOR@] Dr. Alistair Ward [@DESCRIPTION@] Defines the /Chudnovsky/ series for /Pi/; <http://en.wikipedia.org/wiki/Pi>. -} module Factory.Math.Implementations.Pi.Ramanujan.Chudnovsky( -- * Constants series ) where -- import Control.Arrow((***)) import Data.Ratio((%)) -- import Factory.Data.PrimeFactors((>/<), (>*<), (>^)) -- import qualified Factory.Data.PrimeFactors as Data.PrimeFactors import qualified Factory.Math.Factorial as Math.Factorial import qualified Factory.Math.Implementations.Factorial as Math.Implementations.Factorial import qualified Factory.Math.Implementations.Pi.Ramanujan.Series as Math.Implementations.Pi.Ramanujan.Series import qualified Factory.Math.Power as Math.Power import qualified Factory.Math.SquareRoot as Math.SquareRoot -- | Defines the parameters of the /Chudnovsky/ series. series :: ( Math.SquareRoot.Algorithmic squareRootAlgorithm, Math.Factorial.Algorithmic factorialAlgorithm ) => Math.Implementations.Pi.Ramanujan.Series.Series squareRootAlgorithm factorialAlgorithm series = Math.Implementations.Pi.Ramanujan.Series.MkSeries { Math.Implementations.Pi.Ramanujan.Series.terms = \factorialAlgorithm -> zipWith ( {- \n power -> let product' = Data.PrimeFactors.product' (recip 2) 10 in uncurry (%) . ( (* (13591409 + 545140134 * n)) . product' *** (* power) . product' ) $ Math.Implementations.Factorial.primeFactors (6 * n) >/< ( Math.Implementations.Factorial.primeFactors (3 * n) >*< Math.Implementations.Factorial.primeFactors n >^ 3 ) -} \n power -> ( Math.Implementations.Factorial.risingFactorial (succ $ 3 * n) (3 * n) % Math.Power.cube (Math.Factorial.factorial factorialAlgorithm n) ) * ( (13591409 + 545140134 * n) % power ) -- CAVEAT: the order in which these terms are evaluated radically affects performance. ) [0 ..] $ iterate (* (Math.Power.cube $ negate 640320 :: Integer)) 1, Math.Implementations.Pi.Ramanujan.Series.getSeriesScalingFactor = \squareRootAlgorithm decimalDigits -> 426880 * Math.SquareRoot.squareRoot squareRootAlgorithm decimalDigits (10005 :: Integer), Math.Implementations.Pi.Ramanujan.Series.convergenceRate = 10 ** negate 14.0 -- Empirical. }