{- Copyright (C) 2011-2015 Dr. Alistair Ward This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. -} {- | [@AUTHOR@] Dr. Alistair Ward [@DESCRIPTION@] * Generates the constant list of /prime-numbers/, by a variety of different algorithms. * <http://www.haskell.org/haskellwiki/Prime_numbers>. * <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.3936&rep=rep1&type=pdf>. * <http://larc.unt.edu/ian/pubs/sieve.pdf>. -} module Factory.Math.Implementations.Primes.Algorithm( -- * Types -- ** Data-types Algorithm(..) ) where import qualified Data.Default import qualified Data.Numbers.Primes import qualified Factory.Data.PrimeWheel as Data.PrimeWheel import qualified Factory.Math.Implementations.Primes.SieveOfAtkin as Math.Implementations.Primes.SieveOfAtkin import qualified Factory.Math.Implementations.Primes.SieveOfEratosthenes as Math.Implementations.Primes.SieveOfEratosthenes import qualified Factory.Math.Implementations.Primes.TrialDivision as Math.Implementations.Primes.TrialDivision import qualified Factory.Math.Implementations.Primes.TurnersSieve as Math.Implementations.Primes.TurnersSieve import qualified Factory.Math.Primes as Math.Primes -- | The implemented methods by which the primes may be generated. data Algorithm = SieveOfAtkin Integer -- ^ The /Sieve of Atkin/, optimised using a 'Data.PrimeWheel.PrimeWheel' of optimal size, for primes up to the specified maximum bound; <https://en.wikipedia.org/wiki/Sieve_of_Atkin>. | SieveOfEratosthenes Data.PrimeWheel.NPrimes -- ^ The /Sieve of Eratosthenes/ (<https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes>), optimised using a 'Data.PrimeWheel.PrimeWheel'. | TrialDivision Data.PrimeWheel.NPrimes -- ^ For each candidate, confirm indivisibility, by all /primes/ smaller than its /square-root/, optimised using a 'Data.PrimeWheel.PrimeWheel'. | TurnersSieve -- ^ For each /prime/, the infinite list of candidates greater than its /square/, is filtered for indivisibility; <http://www.haskell.org/haskellwiki/Prime_numbers#Turner.27s_sieve_-_Trial_division>. | WheelSieve Int -- ^ 'Data.Numbers.Primes.wheelSieve'. deriving (Eq, Read, Show) instance Data.Default.Default Algorithm where def = SieveOfEratosthenes 7 -- Resulting in a wheel of circumference 510510. instance Math.Primes.Algorithmic Algorithm where primes (SieveOfAtkin maxPrime) = Math.Implementations.Primes.SieveOfAtkin.sieveOfAtkin (Data.PrimeWheel.estimateOptimalSize maxPrime) $ fromIntegral maxPrime primes (SieveOfEratosthenes wheelSize) = Math.Implementations.Primes.SieveOfEratosthenes.sieveOfEratosthenes wheelSize primes (TrialDivision wheelSize) = Math.Implementations.Primes.TrialDivision.trialDivision wheelSize primes TurnersSieve = Math.Implementations.Primes.TurnersSieve.turnersSieve primes (WheelSieve wheelSize) = Data.Numbers.Primes.wheelSieve wheelSize -- Has better space-complexity than 'SieveOfEratosthenes'.