{- Copyright (C) 2011 Dr. Alistair Ward This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. -} {- | [@AUTHOR@] Dr. Alistair Ward [@DESCRIPTION@] * Generates the constant, conceptually infinite, list of /prime-numbers/, using the /Sieve of Eratosthenes/; <https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes>. * Based on <http://www.cs.hmc.edu/~oneill/papers/Sieve-JFP.pdf>. * The implementation; has been optimised using a /wheel/ of static, but parameterised, size; is polymorphic, but with a specialisation for type 'Int'. [@CAVEAT@] The 'Int'-specialisation is implemented by a /rewrite-rule/, which is /very/ fragile. -} module Factory.Math.Implementations.Primes.SieveOfEratosthenes( -- * Types -- ** Type-synonyms -- PrimeMultiplesQueue, -- PrimeMultiplesMap, -- Repository, -- PrimeMultiplesMapInt, -- RepositoryInt, -- * Functions -- head', -- tail', sieveOfEratosthenes, -- sieveOfEratosthenesInt ) where import Control.Arrow((&&&), (***)) import qualified Control.Arrow import qualified Data.IntMap import qualified Data.Map import Data.Sequence((|>)) import qualified Data.Sequence import qualified Factory.Data.PrimeWheel as Data.PrimeWheel -- | The 'Data.Sequence.Seq' counterpart to 'Data.List.head'. head' :: Data.Sequence.Seq [a] -> [a] head' = (`Data.Sequence.index` 0) {- | * The 'Data.Sequence.Seq' counterpart to 'Data.List.tail'. * CAVEAT: because @ Data.List.tail [] @ returns an error, whereas @ tail' Data.Sequence.empty @ returns 'Data.Sequence.empty', this function is for internal use only. -} tail' :: Data.Sequence.Seq [a] -> Data.Sequence.Seq [a] tail' = Data.Sequence.drop 1 -- | An ordered queue of the multiples of primes. type PrimeMultiplesQueue i = Data.Sequence.Seq (Data.PrimeWheel.PrimeMultiples i) -- | A map of the multiples of primes. type PrimeMultiplesMap i = Data.Map.Map i (Data.PrimeWheel.PrimeMultiples i) -- | Combine a /queue/, with a /map/, to form a repository to hold prime-multiples. type Repository i = (PrimeMultiplesQueue i, PrimeMultiplesMap i) {- | * A refinement of the /Sieve Of Eratosthenes/, which pre-sieves candidates, selecting only those /coprime/ to the specified short sequence of low prime-numbers. * The short sequence of initial primes are represented by a 'Data.PrimeWheel.PrimeWheel', of parameterised, but static, size; <https://en.wikipedia.org/wiki/Wheel_factorization>. * The algorithm requires one to record multiples of previously discovered primes, allowing /composite/ candidates to be eliminated by comparison. * Because each /list/ of multiples, starts with the /square/ of the prime from which it was generated, the vast majority will be larger than the maximum prime ultimately demanded, and the effort of constructing and storing this list, is consequently wasted. Many implementations solve this, by requiring specification of the maximum prime required, thus allowing the construction of redundant lists of multiples to be avoided. * This implementation doesn't impose that constraint, leaving a requirement for /rapid/ storage, which is supported by /appending/ the /list/ of prime-multiples, to a /queue/. If a large enough candidate is ever generated, to match the /head/ of the /list/ of prime-multiples, at the /head/ of this /queue/, then the whole /list/ of prime-multiples is dropped from the /queue/, but the /tail/ of this /list/ of prime-multiples, for which there is now a high likelyhood of a subsequent match, must now be re-recorded. A /queue/ doesn't support efficient random /insertion/, so a 'Data.Map.Map' is used for these subsequent multiples. This solution is faster than just using a "Data.PQueue.Min". * CAVEAT: has linear /O(n)/ space-complexity. -} sieveOfEratosthenes :: Integral i => Data.PrimeWheel.NPrimes -> [i] sieveOfEratosthenes = uncurry (++) . (Data.PrimeWheel.getPrimeComponents &&& start . Data.PrimeWheel.roll) . Data.PrimeWheel.mkPrimeWheel where start :: Integral i => [Data.PrimeWheel.Distance i] -> [i] start ~((candidate, rollingWheel) : distances) = candidate : sieve (head distances) (Data.Sequence.singleton $ Data.PrimeWheel.generateMultiples candidate rollingWheel, Data.Map.empty) sieve :: Integral i => Data.PrimeWheel.Distance i -> Repository i -> [i] sieve distance@(candidate, rollingWheel) repository@(primeSquares, squareFreePrimeMultiples) = case Data.Map.lookup candidate squareFreePrimeMultiples of Just primeMultiples -> sieve' $ Control.Arrow.second (insertUniq primeMultiples . Data.Map.delete candidate) repository -- Re-insert subsequent multiples. Nothing -- Not a square-free composite. | candidate == smallestPrimeSquare -> sieve' $ (tail' *** insertUniq subsequentPrimeMultiples) repository -- Migrate subsequent prime-multiples, from 'primeSquares' to 'squareFreePrimeMultiples'. | otherwise {-prime-} -> candidate : sieve' (Control.Arrow.first (|> Data.PrimeWheel.generateMultiples candidate rollingWheel) repository) where (smallestPrimeSquare : subsequentPrimeMultiples) = head' primeSquares where -- sieve' :: Repository i -> [i] sieve' = sieve $ Data.PrimeWheel.rotate distance -- Tail-recurse. insertUniq :: Ord i => Data.PrimeWheel.PrimeMultiples i -> PrimeMultiplesMap i -> PrimeMultiplesMap i insertUniq l m = insert $ dropWhile (`Data.Map.member` m) l where -- insert :: Ord i => Data.PrimeWheel.PrimeMultiples i -> PrimeMultiplesMap i insert [] = error "Factory.Math.Implementations.Primes.SieveOfEratosthenes.sieveOfEratosthenes.sieve.insertUniq.insert:\tnull list" insert (key : values) = Data.Map.insert key values m {-# NOINLINE sieveOfEratosthenes #-} {-# RULES "sieveOfEratosthenes/Int" sieveOfEratosthenes = sieveOfEratosthenesInt #-} -- CAVEAT: doesn't fire when built with profiling enabled. -- | A specialisation of 'PrimeMultiplesMap'. type PrimeMultiplesMapInt = Data.IntMap.IntMap (Data.PrimeWheel.PrimeMultiples Int) -- | A specialisation of 'Repository'. type RepositoryInt = (PrimeMultiplesQueue Int, PrimeMultiplesMapInt) {- | * A specialisation of 'sieveOfEratosthenes', which approximately /doubles/ the speed and reduces the space required. * CAVEAT: because the algorithm involves /squares/ of primes, this implementation will overflow when finding primes greater than @2^16@ on a /32-bit/ machine. -} sieveOfEratosthenesInt :: Data.PrimeWheel.NPrimes -> [Int] sieveOfEratosthenesInt = uncurry (++) . (Data.PrimeWheel.getPrimeComponents &&& start . Data.PrimeWheel.roll) . Data.PrimeWheel.mkPrimeWheel where start :: [Data.PrimeWheel.Distance Int] -> [Int] start ~((candidate, rollingWheel) : distances) = candidate : sieve (head distances) (Data.Sequence.singleton $ Data.PrimeWheel.generateMultiples candidate rollingWheel, Data.IntMap.empty) sieve :: Data.PrimeWheel.Distance Int -> RepositoryInt -> [Int] sieve distance@(candidate, rollingWheel) repository@(primeSquares, squareFreePrimeMultiples) = case Data.IntMap.lookup candidate squareFreePrimeMultiples of Just primeMultiples -> sieve' $ Control.Arrow.second (insertUniq primeMultiples . Data.IntMap.delete candidate) repository Nothing | candidate == smallestPrimeSquare -> sieve' $ (tail' *** insertUniq subsequentPrimeMultiples) repository | otherwise -> candidate : sieve' (Control.Arrow.first (|> Data.PrimeWheel.generateMultiples candidate rollingWheel) repository) where (smallestPrimeSquare : subsequentPrimeMultiples) = head' primeSquares where sieve' :: RepositoryInt -> [Int] sieve' = sieve $ Data.PrimeWheel.rotate distance insertUniq :: Data.PrimeWheel.PrimeMultiples Int -> PrimeMultiplesMapInt -> PrimeMultiplesMapInt insertUniq l m = insert $ dropWhile (`Data.IntMap.member` m) l where insert :: Data.PrimeWheel.PrimeMultiples Int -> PrimeMultiplesMapInt insert [] = error "Factory.Math.Implementations.Primes.SieveOfEratosthenes.sieveOfEratosthenesInt.sieve.insertUniq.insert:\tnull list" insert (key : values) = Data.IntMap.insert key values m