{- Copyright (C) 2011-2015 Dr. Alistair Ward This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. -} {- | [@AUTHOR@] Dr. Alistair Ward [@DESCRIPTION@] Implements 'Math.SquareRoot.Algorithmic' by a variety of methods. [@CAVEAT@] Caller may benefit from application of 'Math.Precision.simplify' before operating on the result; which though of the required accuracy, may not be the most concise rational number satisfying that criterion. -} module Factory.Math.Implementations.SquareRoot( -- * Types -- ** Type-synonyms -- ProblemSpecification, Terms, -- ** Data-types Algorithm(..) -- * Functions -- squareRootByContinuedFraction, -- squareRootByIteration, -- squareRootByTaylorSeries, -- taylorSeriesCoefficients ) where import Control.Arrow((***)) import qualified Data.Default import Factory.Data.PrimeFactors((>/<), (>^)) import qualified Factory.Data.PrimeFactors as Data.PrimeFactors import qualified Factory.Math.Implementations.Factorial as Math.Implementations.Factorial import qualified Factory.Math.Power as Math.Power import qualified Factory.Math.Precision as Math.Precision import qualified Factory.Math.SquareRoot as Math.SquareRoot import qualified Factory.Math.Summation as Math.Summation -- | The number of terms in a series. type Terms = Int -- | The algorithms by which the /square-root/ has been implemented. data Algorithm = BakhshaliApproximation -- ^ <https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Bakhshali_approximation> | ContinuedFraction -- ^ <https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Continued_fraction_expansion>. | HalleysMethod -- ^ <https://en.wikipedia.org/wiki/Halley%27s_method>. | NewtonRaphsonIteration -- ^ <https://en.wikipedia.org/wiki/Newton%27s_method>. | TaylorSeries Terms -- ^ <https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Taylor_series>. deriving (Eq, Read, Show) instance Data.Default.Default Algorithm where def = NewtonRaphsonIteration -- | Returns an improved estimate for the /square-root/ of the specified value, to the required precision, using the supplied initial estimate.. type ProblemSpecification operand = Math.SquareRoot.Estimate -> Math.Precision.DecimalDigits -- ^ The required precision. -> operand -- ^ The value for which to find the /square-root/. -> Math.SquareRoot.Result instance Math.SquareRoot.Algorithmic Algorithm where squareRootFrom _ _ _ 0 = 0 squareRootFrom _ _ _ 1 = 1 squareRootFrom algorithm estimate@(x, decimalDigits) requiredDecimalDigits y | decimalDigits >= requiredDecimalDigits = x | requiredDecimalDigits <= 0 = error $ "Factory.Math.Implementations.SquareRoot.squareRootFrom:\tinvalid number of required decimal digits; " ++ show requiredDecimalDigits | y < 0 = error $ "Factory.Math.Implementations.SquareRoot.squareRootFrom:\tthere's no real square-root of " ++ show y | otherwise = ( case algorithm of ContinuedFraction -> squareRootByContinuedFraction _ -> squareRootByIteration algorithm ) estimate requiredDecimalDigits y instance Math.SquareRoot.Iterator Algorithm where step BakhshaliApproximation y x | dy == 0 = x -- The estimate was precise. | otherwise = x' - dx' -- Correct the estimate. where dy, dydx, dx, x', dydx', dx' :: Math.SquareRoot.Result dy = Math.SquareRoot.getDiscrepancy y x dydx = 2 * x dx = dy / dydx x' = x + dx -- Identical to Newton-Raphson iteration. dydx' = 2 * x' dx' = Math.Power.square dx / dydx' {- * /Halley's/ method; <http://mathworld.wolfram.com/HalleysMethod.html> > X(n+1) = Xn - f(Xn) / [f'(Xn) - f''(Xn) * f(Xn) / 2 * f'(Xn)] > => Xn - (Xn^2 - Y) / [2Xn - 2 * (Xn^2 - Y) / 2 * 2Xn] where Y = X^2, f(X) = X^2 - Y, f'(X) = 2X, f''(X) = 2 > => Xn - 1 / [2Xn / (Xn^2 - Y) - 1 / 2Xn] -} step HalleysMethod y x | dy == 0 = x -- The estimate was precise. | otherwise = x - dx -- Correct the estimate. where dy, dydx, dx :: Math.SquareRoot.Result dy = negate $ Math.SquareRoot.getDiscrepancy y x -- Use the estimate to determine the error in 'y'. dydx = 2 * x -- The gradient, at the estimated value 'x'. dx = recip $ dydx / dy - recip dydx -- step NewtonRaphsonIteration y x = (x + toRational y / x) / 2 -- This is identical to the /Babylonian Method/. -- step NewtonRaphsonIteration y x = x / 2 + toRational y / (2 * x) -- Faster. step NewtonRaphsonIteration y x = x / 2 + (toRational y / 2) / x -- Faster still. step (TaylorSeries terms) y x = squareRootByTaylorSeries terms y x step algorithm _ _ = error $ "Factory.Math.Implementations.SquareRoot.step:\tinappropriate algorithm; " ++ show algorithm convergenceOrder BakhshaliApproximation = Math.Precision.quarticConvergence convergenceOrder ContinuedFraction = Math.Precision.linearConvergence convergenceOrder HalleysMethod = Math.Precision.cubicConvergence convergenceOrder NewtonRaphsonIteration = Math.Precision.quadraticConvergence convergenceOrder (TaylorSeries terms) = terms -- The order of convergence, per iteration, equals the number of terms in the series on each iteration. {- | * Uses /continued-fractions/, to iterate towards the principal /square-root/ of the specified positive integer; <https://en.wikipedia.org/wiki/Solving_quadratic_equations_with_continued_fractions>, <https://en.wikipedia.org/wiki/Generalized_continued_fraction#Roots_of_positive_numbers>, <https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Continued_fraction_expansion>. <http://www.myreckonings.com/Dead_Reckoning/Online/Materials/General%20Method%20for%20Extracting%20Roots.pdf> * The convergence <https://en.wikipedia.org/wiki/Rate_of_convergence> of the /continued-fraction/ is merely /1st order/ (linear). -} squareRootByContinuedFraction :: Real operand => ProblemSpecification operand squareRootByContinuedFraction (initialEstimate, initialDecimalDigits) requiredDecimalDigits y = initialEstimate + (convergents initialEstimate !! Math.Precision.getTermsRequired (10 ^^ negate initialDecimalDigits) requiredDecimalDigits) where convergents :: Math.SquareRoot.Result -> [Math.SquareRoot.Result] convergents x = iterate ((Math.SquareRoot.getDiscrepancy y x /) . ((2 * x) +)) 0 {- | * The constant coefficients of the /Taylor-series/ for a /square-root/; <https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Taylor_series>. * @ ((-1)^n * factorial(2*n)) / ((1 - 2*n) * 4^n * factorial(n^2)) @. -} taylorSeriesCoefficients :: Fractional f => [f] taylorSeriesCoefficients = zipWith ( \powers n -> let doubleN = 2 * n product' = Data.PrimeFactors.product' (recip 2) {-arbitrary-} 10 {-arbitrary-} in uncurry (/) . ( fromIntegral . product' *** fromIntegral . (* ((1 - doubleN) * powers)) . product' ) $ Math.Implementations.Factorial.primeFactors doubleN >/< Math.Implementations.Factorial.primeFactors n >^ 2 ) ( iterate (* negate 4) 1 -- (-4)^n ) [0 :: Integer ..] -- n {- | * Returns the /Taylor-series/ for the /square-root/ of the specified value, to any requested number of terms. * <https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Taylor_series>. * The convergence of the series is merely /linear/, in that each term increases the precision, by a constant number of decimal places, equal to the those in the original estimate. * By feeding-back the improved estimate, to form a new series, the order of convergence, on each successive iteration, becomes proportional to the number of terms; > Terms Convergence > ===== =========== > 2 terms /quadratic/ > 3 terms /cubic/ -} squareRootByTaylorSeries :: Real operand => Terms -- ^ The number of terms of the infinite series, to evaluate. -> operand -- ^ The value for which the /square-root/ is required. -> Math.SquareRoot.Result -- ^ An initial estimate. -> Math.SquareRoot.Result squareRootByTaylorSeries _ _ 0 = error "Factory.Math.Implementations.SquareRoot.squareRootByTaylorSeries:\talgorithm can't cope with estimated value of zero." squareRootByTaylorSeries terms y x | terms < 2 = error $ "Factory.Math.Implementations.SquareRoot.squareRootByTaylorSeries:\tinvalid number of terms; " ++ show terms | otherwise = Math.Summation.sumR' . take terms . zipWith (*) taylorSeriesCoefficients $ iterate (* relativeError) x where relativeError :: Math.SquareRoot.Result relativeError = pred $ toRational y / Math.Power.square x -- Pedantically, this is the error in y, which is twice the magnitude of the error in x. -- | Iterates from the estimated value, towards the /square-root/, a sufficient number of times to achieve the required accuracy. squareRootByIteration :: Real operand => Algorithm -> ProblemSpecification operand squareRootByIteration algorithm (initialEstimate, initialDecimalDigits) requiredDecimalDigits y = iterate (Math.SquareRoot.step algorithm y) initialEstimate !! Math.Precision.getIterationsRequired (Math.SquareRoot.convergenceOrder algorithm) initialDecimalDigits requiredDecimalDigits