#if __GLASGOW_HASKELL__ >= 702
#endif
module Data.Graph.Inductive.PatriciaTree
( Gr
, UGr
)
where
import Data.Graph.Inductive.Graph
import Control.Applicative (liftA2)
import Data.IntMap (IntMap)
import qualified Data.IntMap as IM
import Data.List (sort)
import Data.Maybe (fromMaybe)
#if MIN_VERSION_containers (0,4,2)
import Control.DeepSeq (NFData (..))
#endif
#if __GLASGOW_HASKELL__ >= 702
import GHC.Generics (Generic)
#endif
#if MIN_VERSION_base (4,8,0)
import Data.Bifunctor
#else
import Control.Arrow (second)
#endif
newtype Gr a b = Gr (GraphRep a b)
#if __GLASGOW_HASKELL__ >= 702
deriving (Generic)
#endif
type GraphRep a b = IntMap (Context' a b)
type Context' a b = (IntMap [b], a, IntMap [b])
type UGr = Gr () ()
instance (Eq a, Ord b) => Eq (Gr a b) where
(Gr g1) == (Gr g2) = fmap sortAdj g1 == fmap sortAdj g2
where
sortAdj (p,n,s) = (fmap sort p,n,fmap sort s)
instance (Show a, Show b) => Show (Gr a b) where
showsPrec d g = showParen (d > 10) $
showString "mkGraph "
. shows (labNodes g)
. showString " "
. shows (labEdges g)
instance (Read a, Read b) => Read (Gr a b) where
readsPrec p = readParen (p > 10) $ \ r -> do
("mkGraph", s) <- lex r
(ns,t) <- reads s
(es,u) <- reads t
return (mkGraph ns es, u)
instance Graph Gr where
empty = Gr IM.empty
isEmpty (Gr g) = IM.null g
match = matchGr
mkGraph vs es = insEdges es
. Gr
. IM.fromList
. map (second (\l -> (IM.empty,l,IM.empty)))
$ vs
labNodes (Gr g) = [ (node, label)
| (node, (_, label, _)) <- IM.toList g ]
noNodes (Gr g) = IM.size g
nodeRange (Gr g) = fromMaybe (error "nodeRange of empty graph")
$ liftA2 (,) (ix (IM.minViewWithKey g))
(ix (IM.maxViewWithKey g))
where
ix = fmap (fst . fst)
labEdges (Gr g) = do (node, (_, _, s)) <- IM.toList g
(next, labels) <- IM.toList s
label <- labels
return (node, next, label)
instance DynGraph Gr where
(p, v, l, s) & (Gr g)
= let !g1 = IM.insert v (fromAdj p, l, fromAdj s) g
!g2 = addSucc g1 v p
!g3 = addPred g2 v s
in Gr g3
#if MIN_VERSION_containers (0,4,2)
instance (NFData a, NFData b) => NFData (Gr a b) where
rnf (Gr g) = rnf g
#endif
#if MIN_VERSION_base (4,8,0)
instance Bifunctor Gr where
bimap = fastNEMap
first = fastNMap
second = fastEMap
#endif
matchGr :: Node -> Gr a b -> Decomp Gr a b
matchGr node (Gr g)
= case IM.lookup node g of
Nothing
-> (Nothing, Gr g)
Just (p, label, s)
-> let !g1 = IM.delete node g
!p' = IM.delete node p
!s' = IM.delete node s
!g2 = clearPred g1 node (IM.keys s')
!g3 = clearSucc g2 node (IM.keys p')
in (Just (toAdj p', node, label, toAdj s), Gr g3)
fastInsNode :: LNode a -> Gr a b -> Gr a b
fastInsNode (v, l) (Gr g) = g' `seq` Gr g'
where
g' = IM.insert v (IM.empty, l, IM.empty) g
fastInsEdge :: LEdge b -> Gr a b -> Gr a b
fastInsEdge (v, w, l) (Gr g) = g2 `seq` Gr g2
where
g1 = IM.adjust addSucc' v g
g2 = IM.adjust addPred' w g1
addSucc' (ps, l', ss) = (ps, l', IM.insertWith addLists w [l] ss)
addPred' (ps, l', ss) = (IM.insertWith addLists v [l] ps, l', ss)
fastGMap :: forall a b c d. (Context a b -> Context c d) -> Gr a b -> Gr c d
fastGMap f (Gr g) = Gr (IM.mapWithKey f' g)
where
f' :: Node -> Context' a b -> Context' c d
f' = ((fromContext . f) .) . toContext
fastNMap :: forall a b c. (a -> c) -> Gr a b -> Gr c b
fastNMap f (Gr g) = Gr (IM.map f' g)
where
f' :: Context' a b -> Context' c b
f' (ps, a, ss) = (ps, f a, ss)
fastEMap :: forall a b c. (b -> c) -> Gr a b -> Gr a c
fastEMap f (Gr g) = Gr (IM.map f' g)
where
f' :: Context' a b -> Context' a c
f' (ps, a, ss) = (IM.map (map f) ps, a, IM.map (map f) ss)
fastNEMap :: forall a b c d. (a -> c) -> (b -> d) -> Gr a b -> Gr c d
fastNEMap fn fe (Gr g) = Gr (IM.map f g)
where
f :: Context' a b -> Context' c d
f (ps, a, ss) = (IM.map (map fe) ps, fn a, IM.map (map fe) ss)
toAdj :: IntMap [b] -> Adj b
toAdj = concatMap expand . IM.toList
where
expand (n,ls) = map (flip (,) n) ls
fromAdj :: Adj b -> IntMap [b]
fromAdj = IM.fromListWith addLists . map (second (:[]) . swap)
toContext :: Node -> Context' a b -> Context a b
toContext v (ps, a, ss) = (toAdj ps, v, a, toAdj ss)
fromContext :: Context a b -> Context' a b
fromContext (ps, _, a, ss) = (fromAdj ps, a, fromAdj ss)
swap :: (a, b) -> (b, a)
swap (a, b) = (b, a)
addLists :: [a] -> [a] -> [a]
addLists [a] as = a : as
addLists as [a] = a : as
addLists xs ys = xs ++ ys
addSucc :: GraphRep a b -> Node -> [(b, Node)] -> GraphRep a b
addSucc g _ [] = g
addSucc g v ((l, p) : rest) = addSucc g' v rest
where
g' = IM.adjust f p g
f (ps, l', ss) = (ps, l', IM.insertWith addLists v [l] ss)
addPred :: GraphRep a b -> Node -> [(b, Node)] -> GraphRep a b
addPred g _ [] = g
addPred g v ((l, s) : rest) = addPred g' v rest
where
g' = IM.adjust f s g
f (ps, l', ss) = (IM.insertWith addLists v [l] ps, l', ss)
clearSucc :: GraphRep a b -> Node -> [Node] -> GraphRep a b
clearSucc g _ [] = g
clearSucc g v (p:rest) = clearSucc g' v rest
where
g' = IM.adjust f p g
f (ps, l, ss) = (ps, l, IM.delete v ss)
clearPred :: GraphRep a b -> Node -> [Node] -> GraphRep a b
clearPred g _ [] = g
clearPred g v (s:rest) = clearPred g' v rest
where
g' = IM.adjust f s g
f (ps, l, ss) = (IM.delete v ps, l, ss)