module Data.Generics.Fixplate.Attributes
( Attrib(..)
, annMap
, synthetise
, synthetise' , synthetiseList
, synthetiseM
, synthCata , scanCata
, synthPara , synthPara'
, scanPara
, synthZygo_ , synthZygo , synthZygoWith
, synthAccumCata , synthAccumPara'
, mapAccumCata
, synthCataM , synthParaM , synthParaM'
, inherit , inherit'
, inherit2
, inheritM , inheritM_
, topDownSweepM , topDownSweepM'
, synthAccumL , synthAccumR
, synthAccumL_ , synthAccumR_
, enumerateNodes , enumerateNodes_
, synthTransform , synthTransform'
, synthRewrite , synthRewrite'
, annZip , annZipWith
, annZip3 , annZipWith3
)
where
import Control.Monad (liftM)
import Data.Foldable
import Data.Traversable
import Prelude hiding (foldl,foldr,mapM,mapM_,concat,concatMap,sum,and,or)
import Data.Generics.Fixplate.Base
import Data.Generics.Fixplate.Open
annMap :: Functor f => (a -> b) -> Attr f a -> Attr f b
annMap h = unAttrib . fmap h . Attrib
synthetise :: Functor f => (f a -> a) -> Mu f -> Attr f a
synthetise = synthCata
synthetise' :: Functor f => (a -> f b -> b) -> Attr f a -> Attr f b
synthetise' h = go where
go (Fix (Ann b x)) = Fix $ Ann (h b a) y where
y = fmap go x
a = fmap attribute y
synthetiseList :: (Functor f, Foldable f) => ([a] -> a) -> Mu f -> Attr f a
synthetiseList h = synthetise (h . toList)
synthetiseM :: (Traversable f, Monad m) => (f a -> m a) -> Mu f -> m (Attr f a)
synthetiseM = synthCataM
synthCata :: Functor f => (f a -> a) -> Mu f -> Attr f a
synthCata h = go where
go (Fix x) = Fix $ Ann (h a) y where
y = fmap go x
a = fmap attribute y
scanCata :: Functor f => (a -> f b -> b) -> Attr f a -> Attr f b
scanCata h = go where
go (Fix (Ann a x)) = Fix $ Ann (h a b) y where
y = fmap go x
b = fmap attribute y
synthPara :: Functor f => (f (Mu f, a) -> a) -> Mu f -> Attr f a
synthPara h = snd . go where
go orig@(Fix x) = ( orig , Fix $ Ann (h lft) rht ) where
lft = fmap (\(s,t) -> (s, attribute t)) uv
rht = fmap snd uv
uv = fmap go x
synthPara' :: Functor f => (Mu f -> f a -> a) -> Mu f -> Attr f a
synthPara' h = go where
go t@(Fix x) = Fix $ Ann (h t a) y where
y = fmap go x
a = fmap attribute y
scanPara :: Functor f => (Attr f a -> f b -> b) -> Attr f a -> Attr f b
scanPara h = go where
go t@(Fix (Ann a x)) = Fix $ Ann (h t b) y where
y = fmap go x
b = fmap attribute y
synthZygo_ :: Functor f => (f b -> b) -> (f (b,a) -> a) -> Mu f -> Attr f a
synthZygo_ = synthZygoWith (flip const)
synthZygo :: Functor f => (f b -> b) -> (f (b,a) -> a) -> Mu f -> Attr f (b,a)
synthZygo = synthZygoWith (,)
synthZygoWith :: Functor f => (b -> a -> c) -> (f b -> b) -> (f (b,a) -> a) -> Mu f -> Attr f c
synthZygoWith u g h = snd . go where
go (Fix t) = ( (b,a) , Fix (Ann (u b a) s) ) where
b = g (fmap fst ba)
a = h ba
(ba,s) = unzipF (fmap go t)
synthAccumCata :: Functor f => (f acc -> (acc,b)) -> Mu f -> (acc, Attr f b)
synthAccumCata h = go where
go (Fix x) = (a, Fix (Ann b (fmap snd y))) where
y = fmap go x
(a,b) = h (fmap fst y)
synthAccumPara' :: Functor f => (Mu f -> f acc -> (acc,b)) -> Mu f -> (acc, Attr f b)
synthAccumPara' h = go where
go t@(Fix x) = (a, Fix (Ann b (fmap snd y))) where
y = fmap go x
(a,b) = h t (fmap fst y)
mapAccumCata :: Functor f => (f acc -> b -> (acc,c)) -> Attr f b -> (acc, Attr f c)
mapAccumCata h = go where
go (Fix (Ann b x)) = (acc, Fix (Ann c (fmap snd y))) where
y = fmap go x
(acc,c) = h (fmap fst y) b
synthCataM :: (Traversable f, Monad m) => (f a -> m a) -> Mu f -> m (Attr f a)
synthCataM act = go where
go (Fix x) = do
y <- mapM go x
a <- act $ fmap attribute y
return (Fix (Ann a y))
synthParaM :: (Traversable f, Monad m) => (f (Mu f, a) -> m a) -> Mu f -> m (Attr f a)
synthParaM act tree = liftM snd (go tree) where
go orig@(Fix x) = do
uv <- mapM go x
let lft = fmap (\(s,t) -> (s, attribute t)) uv
let rht = fmap snd uv
a <- act lft
return ( orig , Fix $ Ann a rht )
synthParaM' :: (Traversable f, Monad m) => (Mu f -> f a -> m a) -> Mu f -> m (Attr f a)
synthParaM' act = go where
go t@(Fix x) = do
y <- mapM go x
a <- act t $ fmap attribute y
return (Fix (Ann a y))
inherit :: Functor f => (Mu f -> a -> a) -> a -> Mu f -> Attr f a
inherit h root = go root where
go p s@(Fix t) = let a = h s p in Fix (Ann a (fmap (go a) t))
inherit2 :: Functor f => (Mu f -> a -> (b,a)) -> a -> Mu f -> Attr f b
inherit2 h root = go root where
go p s@(Fix t) = let (b,a) = h s p in Fix (Ann b (fmap (go a) t))
inherit' :: Functor f => (a -> b -> a) -> a -> Attr f b -> Attr f a
inherit' h root = go root where
go p (Fix (Ann a t)) = let b = h p a in Fix (Ann b (fmap (go b) t))
inheritM :: (Traversable f, Monad m) => (Mu f -> a -> m a) -> a -> Mu f -> m (Attr f a)
inheritM act root = go root where
go p s@(Fix t) = do
a <- act s p
u <- mapM (go a) t
return (Fix (Ann a u))
inheritM_ :: (Traversable f, Monad m) => (Mu f -> a -> m a) -> a -> Mu f -> m ()
inheritM_ act root = go root where
go p s@(Fix t) = do
a <- act s p
_ <- mapM (go a) t
return ()
topDownSweepM :: (Traversable f, Monad m) => (f () -> a -> m (f a)) -> a -> Mu f -> m ()
topDownSweepM act root = go root where
go p (Fix t) = do
s <- act (fmap (const ()) t) p
_ <- unsafeZipWithFM go s t
return ()
topDownSweepM' :: (Traversable f, Monad m) => (b -> f b -> a -> m (f a)) -> a -> Attr f b -> m ()
topDownSweepM' act root = go root where
go p (Fix (Ann u t)) = do
s <- act u (fmap attribute t) p
_ <- unsafeZipWithFM go s t
return ()
synthAccumL :: Traversable f => (a -> Mu f -> (a,b)) -> a -> Mu f -> (a, Attr f b)
synthAccumL h x0 tree = go x0 tree where
go x t@(Fix sub) =
let (y,a ) = h x t
(z,sub') = mapAccumL go y sub
in (z, Fix (Ann a sub'))
synthAccumR :: Traversable f => (a -> Mu f -> (a,b)) -> a -> Mu f -> (a, Attr f b)
synthAccumR h x0 tree = go x0 tree where
go x t@(Fix sub) =
let (y,sub') = mapAccumR go x sub
(z,a ) = h y t
in (z, Fix (Ann a sub'))
synthAccumL_ :: Traversable f => (a -> Mu f -> (a,b)) -> a -> Mu f -> Attr f b
synthAccumL_ h x t = snd (synthAccumL h x t)
synthAccumR_ :: Traversable f => (a -> Mu f -> (a,b)) -> a -> Mu f -> Attr f b
synthAccumR_ h x t = snd (synthAccumR h x t)
enumerateNodes :: Traversable f => Mu f -> (Int, Attr f Int)
enumerateNodes tree = synthAccumL (\i _ -> (i+1,i)) 0 tree
enumerateNodes_ :: Traversable f => Mu f -> Attr f Int
enumerateNodes_ = snd . enumerateNodes
synthTransform :: Traversable f => (f a -> a) -> (Attr f a -> Maybe (f (Attr f a))) -> Attr f a -> Attr f a
synthTransform calc = synthTransform' (calc . fmap attribute)
synthTransform' :: Traversable f => (f (Attr f a) -> a) -> (Attr f a -> Maybe (f (Attr f a))) -> Attr f a -> Attr f a
synthTransform' calc h0 = snd . go False where
synth x = Fix $ Ann (calc x) x
hsynth x = case h0 (synth x) of
Nothing -> Nothing
Just y -> Just (synth y)
go changed0 old@(Fix (Ann _ x)) =
let (changed1,y) = mapAccumL go changed0 x
new = case hsynth y of
Nothing -> (changed1,w) where
w = if changed1
then synth y
else old
Just z -> (True, z)
in new
synthRewrite :: Traversable f => (f a -> a) -> (Attr f a -> Maybe (f (Attr f a))) -> Attr f a -> Attr f a
synthRewrite calc = synthRewrite' (calc . fmap attribute)
synthRewrite' :: Traversable f => (f (Attr f a) -> a) -> (Attr f a -> Maybe (f (Attr f a))) -> Attr f a -> Attr f a
synthRewrite' calc h0 = rewrite where
rewrite = snd . go False
synth x = Fix $ Ann (calc x) x
hsynth x = case h0 (synth x) of
Nothing -> Nothing
Just y -> Just (synth y)
go changed0 old@(Fix (Ann _ x)) =
let (changed1,y) = mapAccumL go changed0 x
new = case hsynth y of
Nothing -> (changed1,w) where
w = if changed1
then synth y
else old
Just z -> (True, rewrite z)
in new
annZip :: Functor f => Mu (Ann (Ann f a) b) -> Attr f (a,b)
annZip (Fix (Ann y (Ann x t))) = Fix (Ann (x,y) (fmap annZip t))
annZipWith :: Functor f => (a -> b -> c) -> Mu (Ann (Ann f a) b) -> Attr f c
annZipWith h = go where
go (Fix (Ann y (Ann x t))) = Fix (Ann (h x y) (fmap go t))
annZip3 :: Functor f => Mu (Ann (Ann (Ann f a) b) c) -> Attr f (a,b,c)
annZip3 (Fix (Ann z (Ann y (Ann x t)))) = Fix (Ann (x,y,z) (fmap annZip3 t))
annZipWith3 :: Functor f => (a -> b -> c -> d) -> Mu (Ann (Ann (Ann f a) b) c) -> Attr f d
annZipWith3 h = go where
go (Fix (Ann z (Ann y (Ann x t)))) = Fix (Ann (h x y z) (fmap go t))