#if __GLASGOW_HASKELL__ >= 707
#endif
#include "free-common.h"
module Control.Monad.Trans.Free.Ap
(
FreeF(..)
, FreeT(..)
, Free, free, runFree
, liftF
, iterT
, iterTM
, hoistFreeT
, transFreeT
, joinFreeT
, cutoff
, partialIterT
, intersperseT
, intercalateT
, retractT
, retract
, iter
, iterM
, MonadFree(..)
) where
import Control.Applicative
import Control.Monad (liftM, MonadPlus(..), join)
import Control.Monad.Catch (MonadThrow(..), MonadCatch(..))
import Control.Monad.Trans.Class
import qualified Control.Monad.Fail as Fail
import Control.Monad.Free.Class
import Control.Monad.IO.Class
import Control.Monad.Reader.Class
import Control.Monad.Writer.Class
import Control.Monad.State.Class
import Control.Monad.Error.Class
import Control.Monad.Cont.Class
import Data.Functor.Bind hiding (join)
import Data.Functor.Classes.Compat
import Data.Monoid
import Data.Functor.Identity
import Data.Traversable
import Data.Bifunctor
import Data.Bifoldable
import Data.Bitraversable
import Data.Data
#if !(MIN_VERSION_base(4,8,0))
import Data.Foldable
#endif
data FreeF f a b = Pure a | Free (f b)
deriving (Eq,Ord,Show,Read
#if __GLASGOW_HASKELL__ >= 707
,Typeable
#endif
)
#ifdef LIFTED_FUNCTOR_CLASSES
instance Show1 f => Show2 (FreeF f) where
liftShowsPrec2 spa _sla _spb _slb d (Pure a) =
showsUnaryWith spa "Pure" d a
liftShowsPrec2 _spa _sla spb slb d (Free as) =
showsUnaryWith (liftShowsPrec spb slb) "Free" d as
instance (Show1 f, Show a) => Show1 (FreeF f a) where
liftShowsPrec = liftShowsPrec2 showsPrec showList
#else
instance (Show1 f, Show a) => Show1 (FreeF f a) where
showsPrec1 d (Pure a) = showParen (d > 10) $ showString "Pure " . showsPrec 11 a
showsPrec1 d (Free as) = showParen (d > 10) $ showString "Free " . showsPrec1 11 as
#endif
#ifdef LIFTED_FUNCTOR_CLASSES
instance Read1 f => Read2 (FreeF f) where
liftReadsPrec2 rpa _rla rpb rlb = readsData $
readsUnaryWith rpa "Pure" Pure `mappend`
readsUnaryWith (liftReadsPrec rpb rlb) "Free" Free
instance (Read1 f, Read a) => Read1 (FreeF f a) where
liftReadsPrec = liftReadsPrec2 readsPrec readList
#else
instance (Read1 f, Read a) => Read1 (FreeF f a) where
readsPrec1 d r = readParen (d > 10)
(\r' -> [ (Pure m, t)
| ("Pure", s) <- lex r'
, (m, t) <- readsPrec 11 s]) r
++ readParen (d > 10)
(\r' -> [ (Free m, t)
| ("Free", s) <- lex r'
, (m, t) <- readsPrec1 11 s]) r
#endif
#ifdef LIFTED_FUNCTOR_CLASSES
instance Eq1 f => Eq2 (FreeF f) where
liftEq2 eq _ (Pure a) (Pure b) = eq a b
liftEq2 _ eq (Free as) (Free bs) = liftEq eq as bs
liftEq2 _ _ _ _ = False
instance (Eq1 f, Eq a) => Eq1 (FreeF f a) where
liftEq = liftEq2 (==)
#else
instance (Eq1 f, Eq a) => Eq1 (FreeF f a) where
Pure a `eq1` Pure b = a == b
Free as `eq1` Free bs = as `eq1` bs
_ `eq1` _ = False
#endif
#ifdef LIFTED_FUNCTOR_CLASSES
instance Ord1 f => Ord2 (FreeF f) where
liftCompare2 cmp _ (Pure a) (Pure b) = cmp a b
liftCompare2 _ _ (Pure _) (Free _) = LT
liftCompare2 _ _ (Free _) (Pure _) = GT
liftCompare2 _ cmp (Free fa) (Free fb) = liftCompare cmp fa fb
instance (Ord1 f, Ord a) => Ord1 (FreeF f a) where
liftCompare = liftCompare2 compare
#else
instance (Ord1 f, Ord a) => Ord1 (FreeF f a) where
Pure a `compare1` Pure b = a `compare` b
Pure _ `compare1` Free _ = LT
Free _ `compare1` Pure _ = GT
Free fa `compare1` Free fb = fa `compare1` fb
#endif
instance Functor f => Functor (FreeF f a) where
fmap _ (Pure a) = Pure a
fmap f (Free as) = Free (fmap f as)
instance Foldable f => Foldable (FreeF f a) where
foldMap f (Free as) = foldMap f as
foldMap _ _ = mempty
instance Traversable f => Traversable (FreeF f a) where
traverse _ (Pure a) = pure (Pure a)
traverse f (Free as) = Free <$> traverse f as
instance Functor f => Bifunctor (FreeF f) where
bimap f _ (Pure a) = Pure (f a)
bimap _ g (Free as) = Free (fmap g as)
instance Foldable f => Bifoldable (FreeF f) where
bifoldMap f _ (Pure a) = f a
bifoldMap _ g (Free as) = foldMap g as
instance Traversable f => Bitraversable (FreeF f) where
bitraverse f _ (Pure a) = Pure <$> f a
bitraverse _ g (Free as) = Free <$> traverse g as
transFreeF :: (forall x. f x -> g x) -> FreeF f a b -> FreeF g a b
transFreeF _ (Pure a) = Pure a
transFreeF t (Free as) = Free (t as)
newtype FreeT f m a = FreeT { runFreeT :: m (FreeF f a (FreeT f m a)) }
type Free f = FreeT f Identity
runFree :: Free f a -> FreeF f a (Free f a)
runFree = runIdentity . runFreeT
free :: FreeF f a (Free f a) -> Free f a
free = FreeT . Identity
#ifdef LIFTED_FUNCTOR_CLASSES
instance (Eq1 f, Eq1 m, Eq a) => Eq (FreeT f m a) where
#else
instance (Functor f, Eq1 f, Functor m, Eq1 m, Eq a)=> Eq (FreeT f m a) where
#endif
(==) = eq1
#ifdef LIFTED_FUNCTOR_CLASSES
instance (Eq1 f, Eq1 m) => Eq1 (FreeT f m) where
liftEq eq = go
where
go (FreeT x) (FreeT y) = liftEq (liftEq2 eq go) x y
#else
instance (Functor f, Eq1 f, Functor m, Eq1 m) => Eq1 (FreeT f m) where
eq1 = on eq1 (fmap (Lift1 . fmap Lift1) . runFreeT)
#endif
#ifdef LIFTED_FUNCTOR_CLASSES
instance (Ord1 f, Ord1 m, Ord a) => Ord (FreeT f m a) where
#else
instance (Functor f, Ord1 f, Functor m, Ord1 m, Ord a) => Ord (FreeT f m a) where
#endif
compare = compare1
#ifdef LIFTED_FUNCTOR_CLASSES
instance (Ord1 f, Ord1 m) => Ord1 (FreeT f m) where
liftCompare cmp = go
where
go (FreeT x) (FreeT y) = liftCompare (liftCompare2 cmp go) x y
#else
instance (Functor f, Ord1 f, Functor m, Ord1 m) => Ord1 (FreeT f m) where
compare1 = on compare1 (fmap (Lift1 . fmap Lift1) . runFreeT)
#endif
#ifdef LIFTED_FUNCTOR_CLASSES
instance (Show1 f, Show1 m) => Show1 (FreeT f m) where
liftShowsPrec sp sl = go
where
goList = liftShowList sp sl
go d (FreeT x) = showsUnaryWith
(liftShowsPrec (liftShowsPrec2 sp sl go goList) (liftShowList2 sp sl go goList))
"FreeT" d x
#else
instance (Functor f, Show1 f, Functor m, Show1 m) => Show1 (FreeT f m) where
showsPrec1 d (FreeT m) = showParen (d > 10) $
showString "FreeT " . showsPrec1 11 (Lift1 . fmap Lift1 <$> m)
#endif
#ifdef LIFTED_FUNCTOR_CLASSES
instance (Show1 f, Show1 m, Show a) => Show (FreeT f m a) where
#else
instance (Functor f, Show1 f, Functor m, Show1 m, Show a) => Show (FreeT f m a) where
#endif
showsPrec = showsPrec1
#ifdef LIFTED_FUNCTOR_CLASSES
instance (Read1 f, Read1 m) => Read1 (FreeT f m) where
liftReadsPrec rp rl = go
where
goList = liftReadList rp rl
go = readsData $ readsUnaryWith
(liftReadsPrec (liftReadsPrec2 rp rl go goList) (liftReadList2 rp rl go goList))
"FreeT" FreeT
#else
instance (Functor f, Read1 f, Functor m, Read1 m) => Read1 (FreeT f m) where
readsPrec1 d = readParen (d > 10) $ \r ->
[ (FreeT (fmap lower1 . lower1 <$> m),t) | ("FreeT",s) <- lex r, (m,t) <- readsPrec1 11 s]
#endif
#ifdef LIFTED_FUNCTOR_CLASSES
instance (Read1 f, Read1 m, Read a) => Read (FreeT f m a) where
#else
instance (Functor f, Read1 f, Functor m, Read1 m, Read a) => Read (FreeT f m a) where
#endif
readsPrec = readsPrec1
instance (Functor f, Monad m) => Functor (FreeT f m) where
fmap f (FreeT m) = FreeT (liftM f' m) where
f' (Pure a) = Pure (f a)
f' (Free as) = Free (fmap (fmap f) as)
instance (Applicative f, Applicative m, Monad m) => Applicative (FreeT f m) where
pure a = FreeT (return (Pure a))
FreeT f <*> FreeT a = FreeT $ g <$> f <*> a where
g (Pure f') (Pure a') = Pure (f' a')
g (Pure f') (Free as) = Free $ fmap f' <$> as
g (Free fs) (Pure a') = Free $ fmap ($ a') <$> fs
g (Free fs) (Free as) = Free $ (<*>) <$> fs <*> as
instance (Apply f, Apply m, Monad m) => Apply (FreeT f m) where
FreeT f <.> FreeT a = FreeT $ g <$> f <.> a where
g (Pure f') (Pure a') = Pure (f' a')
g (Pure f') (Free as) = Free $ fmap f' <$> as
g (Free fs) (Pure a') = Free $ fmap ($ a') <$> fs
g (Free fs) (Free as) = Free $ (<.>) <$> fs <.> as
instance (Apply f, Apply m, Monad m) => Bind (FreeT f m) where
FreeT m >>- f = FreeT $ m >>= \v -> case v of
Pure a -> runFreeT (f a)
Free w -> return (Free (fmap (>>- f) w))
instance (Applicative f, Applicative m, Monad m) => Monad (FreeT f m) where
return = pure
FreeT m >>= f = FreeT $ m >>= \v -> case v of
Pure a -> runFreeT (f a)
Free w -> return (Free (fmap (>>= f) w))
fail = Fail.fail
instance (Applicative f, Applicative m, Monad m) => Fail.MonadFail (FreeT f m) where
fail e = FreeT (fail e)
instance MonadTrans (FreeT f) where
lift = FreeT . liftM Pure
instance (Applicative f, Applicative m, MonadIO m) => MonadIO (FreeT f m) where
liftIO = lift . liftIO
instance (Applicative f, Applicative m, MonadReader r m) => MonadReader r (FreeT f m) where
ask = lift ask
local f = hoistFreeT (local f)
instance (Applicative f, Applicative m, MonadWriter w m) => MonadWriter w (FreeT f m) where
tell = lift . tell
listen (FreeT m) = FreeT $ liftM concat' $ listen (fmap listen `liftM` m)
where
concat' (Pure x, w) = Pure (x, w)
concat' (Free y, w) = Free $ fmap (second (w <>)) <$> y
pass m = FreeT . pass' . runFreeT . hoistFreeT clean $ listen m
where
clean = pass . liftM (\x -> (x, const mempty))
pass' = join . liftM g
g (Pure ((x, f), w)) = tell (f w) >> return (Pure x)
g (Free f) = return . Free . fmap (FreeT . pass' . runFreeT) $ f
#if MIN_VERSION_mtl(2,1,1)
writer w = lift (writer w)
#endif
instance (Applicative f, Applicative m, MonadState s m) => MonadState s (FreeT f m) where
get = lift get
put = lift . put
#if MIN_VERSION_mtl(2,1,1)
state f = lift (state f)
#endif
instance (Applicative f, Applicative m, MonadError e m) => MonadError e (FreeT f m) where
throwError = lift . throwError
FreeT m `catchError` f = FreeT $ liftM (fmap (`catchError` f)) m `catchError` (runFreeT . f)
instance (Applicative f, Applicative m, MonadCont m) => MonadCont (FreeT f m) where
callCC f = FreeT $ callCC (\k -> runFreeT $ f (lift . k . Pure))
instance (Applicative f, Applicative m, MonadPlus m) => Alternative (FreeT f m) where
empty = FreeT mzero
FreeT ma <|> FreeT mb = FreeT (mplus ma mb)
instance (Applicative f, Applicative m, MonadPlus m) => MonadPlus (FreeT f m) where
mzero = FreeT mzero
mplus (FreeT ma) (FreeT mb) = FreeT (mplus ma mb)
instance (Applicative f, Applicative m, Monad m) => MonadFree f (FreeT f m) where
wrap = FreeT . return . Free
instance (Applicative f, Applicative m, MonadThrow m) => MonadThrow (FreeT f m) where
throwM = lift . throwM
instance (Applicative f, Applicative m, MonadCatch m) => MonadCatch (FreeT f m) where
FreeT m `catch` f = FreeT $ liftM (fmap (`Control.Monad.Catch.catch` f)) m
`Control.Monad.Catch.catch` (runFreeT . f)
iterT :: (Applicative f, Monad m) => (f (m a) -> m a) -> FreeT f m a -> m a
iterT f (FreeT m) = do
val <- m
case fmap (iterT f) val of
Pure x -> return x
Free y -> f y
iterTM :: (Applicative f, Monad m, MonadTrans t, Monad (t m)) => (f (t m a) -> t m a) -> FreeT f m a -> t m a
iterTM f (FreeT m) = do
val <- lift m
case fmap (iterTM f) val of
Pure x -> return x
Free y -> f y
instance (Foldable m, Foldable f) => Foldable (FreeT f m) where
foldMap f (FreeT m) = foldMap (bifoldMap f (foldMap f)) m
instance (Monad m, Traversable m, Traversable f) => Traversable (FreeT f m) where
traverse f (FreeT m) = FreeT <$> traverse (bitraverse f (traverse f)) m
hoistFreeT :: (Monad m, Applicative f) => (forall a. m a -> n a) -> FreeT f m b -> FreeT f n b
hoistFreeT mh = FreeT . mh . liftM (fmap (hoistFreeT mh)) . runFreeT
transFreeT :: (Monad m, Applicative g) => (forall a. f a -> g a) -> FreeT f m b -> FreeT g m b
transFreeT nt = FreeT . liftM (fmap (transFreeT nt) . transFreeF nt) . runFreeT
joinFreeT :: (Monad m, Traversable f, Applicative f) => FreeT f m a -> m (Free f a)
joinFreeT (FreeT m) = m >>= joinFreeF
where
joinFreeF (Pure x) = return (return x)
joinFreeF (Free f) = wrap `liftM` Data.Traversable.mapM joinFreeT f
retract :: Monad f => Free f a -> f a
retract m =
case runIdentity (runFreeT m) of
Pure a -> return a
Free as -> as >>= retract
iter :: Applicative f => (f a -> a) -> Free f a -> a
iter phi = runIdentity . iterT (Identity . phi . fmap runIdentity)
iterM :: (Applicative f, Monad m) => (f (m a) -> m a) -> Free f a -> m a
iterM phi = iterT phi . hoistFreeT (return . runIdentity)
cutoff :: (Applicative f, Applicative m, Monad m) => Integer -> FreeT f m a -> FreeT f m (Maybe a)
cutoff n _ | n <= 0 = return Nothing
cutoff n (FreeT m) = FreeT $ bimap Just (cutoff (n 1)) `liftM` m
partialIterT :: Monad m => Integer -> (forall a. f a -> m a) -> FreeT f m b -> FreeT f m b
partialIterT n phi m
| n <= 0 = m
| otherwise = FreeT $ do
val <- runFreeT m
case val of
Pure a -> return (Pure a)
Free f -> phi f >>= runFreeT . partialIterT (n 1) phi
intersperseT :: (Monad m, Applicative m, Applicative f) => f a -> FreeT f m b -> FreeT f m b
intersperseT f (FreeT m) = FreeT $ do
val <- m
case val of
Pure x -> return $ Pure x
Free y -> return . Free $ fmap (iterTM (wrap . (<$ f) . wrap)) y
retractT :: (MonadTrans t, Monad (t m), Monad m) => FreeT (t m) m a -> t m a
retractT (FreeT m) = do
val <- lift m
case val of
Pure x -> return x
Free y -> y >>= retractT
#if __GLASGOW_HASKELL__ < 710
intercalateT :: (Monad m, MonadTrans t, Monad (t m), Applicative (t m)) => t m a -> FreeT (t m) m b -> t m b
#else
intercalateT :: (Monad m, MonadTrans t, Monad (t m)) => t m a -> FreeT (t m) m b -> t m b
#endif
intercalateT f (FreeT m) = do
val <- lift m
case val of
Pure x -> return x
Free y -> y >>= iterTM (\x -> f >> join x)
#if __GLASGOW_HASKELL__ < 707
instance Typeable1 f => Typeable2 (FreeF f) where
typeOf2 t = mkTyConApp freeFTyCon [typeOf1 (f t)] where
f :: FreeF f a b -> f a
f = undefined
instance (Typeable1 f, Typeable1 w) => Typeable1 (FreeT f w) where
typeOf1 t = mkTyConApp freeTTyCon [typeOf1 (f t), typeOf1 (w t)] where
f :: FreeT f w a -> f a
f = undefined
w :: FreeT f w a -> w a
w = undefined
freeFTyCon, freeTTyCon :: TyCon
#if __GLASGOW_HASKELL__ < 704
freeTTyCon = mkTyCon "Control.Monad.Trans.Free.FreeT"
freeFTyCon = mkTyCon "Control.Monad.Trans.Free.FreeF"
#else
freeTTyCon = mkTyCon3 "free" "Control.Monad.Trans.Free" "FreeT"
freeFTyCon = mkTyCon3 "free" "Control.Monad.Trans.Free" "FreeF"
#endif
instance
( Typeable1 f, Typeable a, Typeable b
, Data a, Data (f b), Data b
) => Data (FreeF f a b) where
gfoldl f z (Pure a) = z Pure `f` a
gfoldl f z (Free as) = z Free `f` as
toConstr Pure{} = pureConstr
toConstr Free{} = freeConstr
gunfold k z c = case constrIndex c of
1 -> k (z Pure)
2 -> k (z Free)
_ -> error "gunfold"
dataTypeOf _ = freeFDataType
dataCast1 f = gcast1 f
instance
( Typeable1 f, Typeable1 w, Typeable a
, Data (w (FreeF f a (FreeT f w a)))
, Data a
) => Data (FreeT f w a) where
gfoldl f z (FreeT w) = z FreeT `f` w
toConstr _ = freeTConstr
gunfold k z c = case constrIndex c of
1 -> k (z FreeT)
_ -> error "gunfold"
dataTypeOf _ = freeTDataType
dataCast1 f = gcast1 f
pureConstr, freeConstr, freeTConstr :: Constr
pureConstr = mkConstr freeFDataType "Pure" [] Prefix
freeConstr = mkConstr freeFDataType "Free" [] Prefix
freeTConstr = mkConstr freeTDataType "FreeT" [] Prefix
freeFDataType, freeTDataType :: DataType
freeFDataType = mkDataType "Control.Monad.Trans.Free.FreeF" [pureConstr, freeConstr]
freeTDataType = mkDataType "Control.Monad.Trans.Free.FreeT" [freeTConstr]
#endif