{-# LANGUAGE CPP #-} {-# LANGUAGE TypeOperators #-} {-# OPTIONS_GHC -Wno-deprecations #-} -- | -- Module : Data.Functor.Contravariant.Divise -- Copyright : (c) Justin Le 2019 -- License : BSD3 -- -- Maintainer : justin@jle.im -- Stability : experimental -- Portability : non-portable -- -- The contravariant counterpart of 'Apply': like 'Divisible', but without -- 'conquer'. This is only a part of this library currently for -- compatibility, until it is (hopefully) merged into /semigroupoids/. -- -- @since 0.3.0.0 module Data.Functor.Contravariant.Divise ( Divise(..) , (<:>) , dsum1 , WrappedDivisible(..) ) where import Control.Applicative import Control.Applicative.Backwards import Control.Arrow import Control.Monad.Trans.Error import Control.Monad.Trans.Except import Control.Monad.Trans.Identity import Control.Monad.Trans.List import Control.Monad.Trans.Maybe import Control.Monad.Trans.Reader import Data.Deriving import Data.Functor.Apply import Data.Functor.Compose import Data.Functor.Constant import Data.Functor.Contravariant import Data.Functor.Contravariant.Divisible import Data.Functor.Invariant import Data.Functor.Product import Data.Functor.Reverse import qualified Control.Monad.Trans.RWS.Lazy as Lazy import qualified Control.Monad.Trans.RWS.Strict as Strict import qualified Control.Monad.Trans.State.Lazy as Lazy import qualified Control.Monad.Trans.State.Strict as Strict import qualified Control.Monad.Trans.Writer.Lazy as Lazy import qualified Control.Monad.Trans.Writer.Strict as Strict import qualified Data.Semigroup.Foldable as F1 #if MIN_VERSION_base(4,8,0) import Data.Monoid (Alt(..)) #else import Data.Monoid (Monoid(..)) #endif #if MIN_VERSION_base(4,9,0) && !MIN_VERSION_base(4,12,0) import Data.Semigroup (Semigroup(..)) #endif #if MIN_VERSION_base(4,7,0) || defined(MIN_VERSION_tagged) import Data.Proxy #endif #ifdef MIN_VERSION_StateVar import Data.StateVar #endif #if __GLASGOW_HASKELL__ >= 702 #define GHC_GENERICS import GHC.Generics #endif -- | The contravariant analogue of 'Apply'; it is -- 'Divisible' without 'conquer'. -- -- If one thinks of @f a@ as a consumer of @a@s, then 'divise' allows one -- to handle the consumption of a value by splitting it between two -- consumers that consume separate parts of @a@. -- -- 'divise' takes the "splitting" method and the two sub-consumers, and -- returns the wrapped/combined consumer. -- -- All instances of 'Divisible' should be instances of 'Divise' with -- @'divise' = 'divide'@. -- -- The guarantee that a function polymorphic over of @'Divise' f@ provides -- that @'Divisible' f@ doesn't that any input consumed will be passed to at -- least one sub-consumer; it won't potentially disappear into the void, as -- is possible if 'conquer' is available. -- -- Mathematically, a functor being an instance of 'Divise' means that it is -- "semgroupoidal" with respect to the contravariant (tupling) Day -- convolution. That is, it is possible to define a function @(f `Day` f) -- a -> f a@ in a way that is associative. class Contravariant f => Divise f where -- | Takes a "splitting" method and the two sub-consumers, and -- returns the wrapped/combined consumer. divise :: (a -> (b, c)) -> f b -> f c -> f a divise f x y = contramap f (divised x y) -- | Combine a consumer of @a@ with a consumer of @b@ to get a consumer -- of @(a, b)@. divised :: f a -> f b -> f (a, b) divised = divise id {-# MINIMAL divise | divised #-} -- | The Contravariant version of '<|>': split the same input over two -- different consumers. (<:>) :: Divise f => f a -> f a -> f a x <:> y = divise (\r -> (r,r)) x y -- | Convenient helper function to build up a 'Divise' by splitting -- input across many different @f a@s. Most useful when used alongside -- 'contramap': -- -- @ -- dsum1 $ contramap get1 x -- :| [ contramap get2 y -- , contramap get3 z -- ] -- @ -- -- @since 0.3.3.0 dsum1 :: (F1.Foldable1 t, Divise f) => t (f a) -> f a dsum1 = foldr1 (<:>) . F1.toNonEmpty -- | Wrap a 'Divisible' to be used as a member of 'Divise' newtype WrappedDivisible f a = WrapDivisible { unwrapDivisible :: f a } deriving (Generic, Eq, Show, Ord, Read, Functor, Foldable, Traversable) deriving newtype (Divisible, Contravariant) deriveShow1 ''WrappedDivisible deriveRead1 ''WrappedDivisible deriveEq1 ''WrappedDivisible deriveOrd1 ''WrappedDivisible instance Contravariant f => Invariant (WrappedDivisible f) where invmap _ g (WrapDivisible x) = WrapDivisible (contramap g x) instance Divisible f => Divise (WrappedDivisible f) where divise f (WrapDivisible x) (WrapDivisible y) = WrapDivisible (divide f x y) #if MIN_VERSION_base(4,9,0) -- | Unlike 'Divisible', requires only 'Semigroup' on @r@. instance Semigroup r => Divise (Op r) where divise f (Op g) (Op h) = Op $ \a -> case f a of (b, c) -> g b <> h c -- | Unlike 'Divisible', requires only 'Semigroup' on @m@. instance Semigroup m => Divise (Const m) where divise _ (Const a) (Const b) = Const (a <> b) -- | Unlike 'Divisible', requires only 'Semigroup' on @m@. instance Semigroup m => Divise (Constant m) where divise _ (Constant a) (Constant b) = Constant (a <> b) #else instance Monoid r => Divise (Op r) where divise = divide instance Monoid m => Divise (Const m) where divise = divide instance Monoid m => Divise (Constant m) where divise = divide #endif instance Divise Comparison where divise = divide instance Divise Equivalence where divise = divide instance Divise Predicate where divise = divide #if MIN_VERSION_base(4,7,0) || defined(MIN_VERSION_tagged) instance Divise Proxy where divise = divide #endif #ifdef MIN_VERSION_StateVar instance Divise SettableStateVar where divise = divide #endif #if MIN_VERSION_base(4,8,0) instance Divise f => Divise (Alt f) where divise f (Alt l) (Alt r) = Alt $ divise f l r #endif #ifdef GHC_GENERICS instance Divise U1 where divise = divide instance Divise V1 where divise _ = \case {} instance Divise f => Divise (Rec1 f) where divise f (Rec1 l) (Rec1 r) = Rec1 $ divise f l r instance Divise f => Divise (M1 i c f) where divise f (M1 l) (M1 r) = M1 $ divise f l r instance (Divise f, Divise g) => Divise (f :*: g) where divise f (l1 :*: r1) (l2 :*: r2) = divise f l1 l2 :*: divise f r1 r2 -- | Unlike 'Divisible', requires only 'Apply' on @f@. instance (Apply f, Divise g) => Divise (f :.: g) where divise f (Comp1 l) (Comp1 r) = Comp1 (liftF2 (divise f) l r) #endif instance Divise f => Divise (Backwards f) where divise f (Backwards l) (Backwards r) = Backwards $ divise f l r instance Divise m => Divise (ErrorT e m) where divise f (ErrorT l) (ErrorT r) = ErrorT $ divise (funzip . fmap f) l r instance Divise m => Divise (ExceptT e m) where divise f (ExceptT l) (ExceptT r) = ExceptT $ divise (funzip . fmap f) l r instance Divise f => Divise (IdentityT f) where divise f (IdentityT l) (IdentityT r) = IdentityT $ divise f l r instance Divise m => Divise (ListT m) where divise f (ListT l) (ListT r) = ListT $ divise (funzip . map f) l r instance Divise m => Divise (MaybeT m) where divise f (MaybeT l) (MaybeT r) = MaybeT $ divise (funzip . fmap f) l r instance Divise m => Divise (ReaderT r m) where divise abc (ReaderT rmb) (ReaderT rmc) = ReaderT $ \r -> divise abc (rmb r) (rmc r) instance Divise m => Divise (Lazy.RWST r w s m) where divise abc (Lazy.RWST rsmb) (Lazy.RWST rsmc) = Lazy.RWST $ \r s -> divise (\ ~(a, s', w) -> case abc a of ~(b, c) -> ((b, s', w), (c, s', w))) (rsmb r s) (rsmc r s) instance Divise m => Divise (Strict.RWST r w s m) where divise abc (Strict.RWST rsmb) (Strict.RWST rsmc) = Strict.RWST $ \r s -> divise (\(a, s', w) -> case abc a of (b, c) -> ((b, s', w), (c, s', w))) (rsmb r s) (rsmc r s) instance Divise m => Divise (Lazy.StateT s m) where divise f (Lazy.StateT l) (Lazy.StateT r) = Lazy.StateT $ \s -> divise (lazyFanout f) (l s) (r s) instance Divise m => Divise (Strict.StateT s m) where divise f (Strict.StateT l) (Strict.StateT r) = Strict.StateT $ \s -> divise (strictFanout f) (l s) (r s) instance Divise m => Divise (Lazy.WriterT w m) where divise f (Lazy.WriterT l) (Lazy.WriterT r) = Lazy.WriterT $ divise (lazyFanout f) l r instance Divise m => Divise (Strict.WriterT w m) where divise f (Strict.WriterT l) (Strict.WriterT r) = Strict.WriterT $ divise (strictFanout f) l r -- | Unlike 'Divisible', requires only 'Apply' on @f@. instance (Apply f, Divise g) => Divise (Compose f g) where divise f (Compose l) (Compose r) = Compose (liftF2 (divise f) l r) instance (Divise f, Divise g) => Divise (Product f g) where divise f (Pair l1 r1) (Pair l2 r2) = Pair (divise f l1 l2) (divise f r1 r2) instance Divise f => Divise (Reverse f) where divise f (Reverse l) (Reverse r) = Reverse $ divise f l r lazyFanout :: (a -> (b, c)) -> (a, s) -> ((b, s), (c, s)) lazyFanout f ~(a, s) = case f a of ~(b, c) -> ((b, s), (c, s)) strictFanout :: (a -> (b, c)) -> (a, s) -> ((b, s), (c, s)) strictFanout f (a, s) = case f a of (b, c) -> ((b, s), (c, s)) funzip :: Functor f => f (a, b) -> (f a, f b) funzip = fmap fst &&& fmap snd -- TODO: WrappedContravariant