-- | -- Module : Data.HFunctor.Final -- Copyright : (c) Justin Le 2019 -- License : BSD3 -- -- Maintainer : justin@jle.im -- Stability : experimental -- Portability : non-portable -- -- Provides 'Final', which can be considered the "free 'Interpret' over -- a constraint": generate a handy 'Interpret' instance for any constraint -- @c@. module Data.HFunctor.Final ( Final(..) , fromFinal, toFinal , FreeOf(..), finalizing , hoistFinalC , liftFinal0 , liftFinal1 , liftFinal2 ) where import Control.Applicative import Control.Applicative.Free import Control.Applicative.Lift import Control.Applicative.ListF import Control.Monad import Control.Monad.Freer.Church hiding (toFree) import Control.Monad.Reader import Control.Monad.Trans.Identity import Control.Natural import Control.Natural.IsoF import Data.Constraint.Trivial import Data.Functor.Apply.Free import Data.Functor.Bind import Data.Functor.Contravariant import Data.Functor.Contravariant.Conclude import Data.Functor.Contravariant.Decide import Data.Functor.Contravariant.Divise import Data.Functor.Contravariant.Divisible import Data.Functor.Contravariant.Divisible.Free import Data.Functor.Coyoneda import Data.Functor.Invariant import Data.Functor.Invariant.Inplicative import Data.Functor.Invariant.Inplicative.Free import Data.Functor.Invariant.Internative import Data.Functor.Invariant.Internative.Free import Data.Functor.Plus import Data.HFunctor import Data.HFunctor.Interpret import Data.Kind import Data.Pointed import qualified Control.Alternative.Free as Alt import qualified Control.Applicative.Free.Fast as FAF import qualified Data.Functor.Contravariant.Coyoneda as CCY -- | A simple way to inject/reject into any eventual typeclass. -- -- In a way, this is the "ultimate" multi-purpose 'Interpret' instance. -- You can use this to inject an @f@ into a free structure of any -- typeclass. If you want @f@ to have a 'Monad' instance, for example, -- just use -- -- @ -- 'inject' :: f a -> 'Final' 'Monad' f a -- @ -- -- When you want to eventually interpret out the data, use: -- -- @ -- 'interpret' :: (f '~>' g) -> 'Final' c f a -> g a -- @ -- -- Essentially, @'Final' c@ is the "free c". @'Final' 'Monad'@ is the free -- 'Monad', etc. -- -- 'Final' can theoretically replace 'Ap', 'Ap1', 'ListF', 'NonEmptyF', -- 'MaybeF', 'Free', 'Data.Functor.Identity.Identity', 'Coyoneda', and -- other instances of 'FreeOf', if you don't care about being able to -- pattern match on explicit structure. -- -- However, it cannot replace 'Interpret' instances that are not free -- structures, like 'Control.Applicative.Step.Step', -- 'Control.Applicative.Step.Steps', -- 'Control.Applicative.Backwards.Backwards', etc. -- -- Note that this doesn't have instances for /all/ the typeclasses you -- could lift things into; you probably have to define your own if you want -- to use @'Final' c@ as an /instance/ of @c@ (using 'liftFinal0', -- 'liftFinal1', 'liftFinal2' for help). newtype Final c f a = Final { runFinal :: forall g. c g => (forall x. f x -> g x) -> g a } -- | Lift an action into a 'Final'. liftFinal0 :: (forall g. c g => g a) -> Final c f a liftFinal0 x = Final $ \_ -> x -- | Map the action in a 'Final'. liftFinal1 :: (forall g. c g => g a -> g b) -> Final c f a -> Final c f b liftFinal1 f x = Final $ \r -> f (runFinal x r) -- | Merge two 'Final' actions. liftFinal2 :: (forall g. c g => g a -> g b -> g d) -> Final c f a -> Final c f b -> Final c f d liftFinal2 f x y = Final $ \r -> f (runFinal x r) (runFinal y r) instance Functor (Final Functor f) where fmap f = liftFinal1 (fmap f) instance Functor (Final Apply f) where fmap f = liftFinal1 (fmap f) instance Apply (Final Apply f) where (<.>) = liftFinal2 (<.>) liftF2 f = liftFinal2 (liftF2 f) instance Functor (Final Bind f) where fmap f = liftFinal1 (fmap f) instance Apply (Final Bind f) where (<.>) = liftFinal2 (<.>) liftF2 f = liftFinal2 (liftF2 f) instance Bind (Final Bind f) where x >>- f = Final $ \r -> runFinal x r >>- \y -> runFinal (f y) r instance Functor (Final Applicative f) where fmap f = liftFinal1 (fmap f) instance Apply (Final Applicative f) where (<.>) = liftFinal2 (<*>) liftF2 f = liftFinal2 (liftA2 f) instance Applicative (Final Applicative f) where pure x = liftFinal0 (pure x) (<*>) = liftFinal2 (<*>) liftA2 f = liftFinal2 (liftA2 f) instance Functor (Final Alternative f) where fmap f = liftFinal1 (fmap f) instance Apply (Final Alternative f) where (<.>) = liftFinal2 (<*>) liftF2 f = liftFinal2 (liftA2 f) instance Applicative (Final Alternative f) where pure x = liftFinal0 (pure x) (<*>) = liftFinal2 (<*>) liftA2 f = liftFinal2 (liftA2 f) -- | @since 0.3.0.0 instance Alt (Final Alternative f) where () = liftFinal2 (<|>) -- | @since 0.3.0.0 instance Plus (Final Alternative f) where zero = liftFinal0 empty instance Alternative (Final Alternative f) where empty = liftFinal0 empty (<|>) = liftFinal2 (<|>) instance Functor (Final Monad f) where fmap f = liftFinal1 (fmap f) instance Apply (Final Monad f) where (<.>) = liftFinal2 (<*>) liftF2 f = liftFinal2 (liftA2 f) instance Applicative (Final Monad f) where pure x = liftFinal0 (pure x) (<*>) = liftFinal2 (<*>) liftA2 f = liftFinal2 (liftA2 f) instance Monad (Final Monad f) where x >>= f = Final $ \r -> do y <- runFinal x r runFinal (f y) r instance Functor (Final MonadPlus f) where fmap f = liftFinal1 (fmap f) instance Applicative (Final MonadPlus f) where pure x = liftFinal0 (pure x) (<*>) = liftFinal2 (<*>) liftA2 f = liftFinal2 (liftA2 f) instance Monad (Final MonadPlus f) where x >>= f = Final $ \r -> do y <- runFinal x r runFinal (f y) r -- | @since 0.3.0.0 instance Alt (Final MonadPlus f) where () = liftFinal2 (<|>) -- | @since 0.3.0.0 instance Plus (Final MonadPlus f) where zero = liftFinal0 empty instance Alternative (Final MonadPlus f) where empty = liftFinal0 empty (<|>) = liftFinal2 (<|>) instance MonadPlus (Final MonadPlus f) where mzero = liftFinal0 mzero mplus = liftFinal2 mplus instance Pointed (Final Pointed f) where point x = liftFinal0 (point x) instance Functor (Final (MonadReader r) f) where fmap f = liftFinal1 (fmap f) instance Applicative (Final (MonadReader r) f) where pure x = liftFinal0 (pure x) (<*>) = liftFinal2 (<*>) liftA2 f = liftFinal2 (liftA2 f) instance Apply (Final (MonadReader r) f) where (<.>) = liftFinal2 (<*>) liftF2 f = liftFinal2 (liftA2 f) instance Monad (Final (MonadReader r) f) where x >>= f = Final $ \r -> do y <- runFinal x r runFinal (f y) r instance MonadReader r (Final (MonadReader r) f) where ask = liftFinal0 ask local f = liftFinal1 (local f) instance Functor (Final Alt f) where fmap f = liftFinal1 (fmap f) instance Alt (Final Alt f) where () = liftFinal2 () instance Functor (Final Plus f) where fmap f = liftFinal1 (fmap f) instance Alt (Final Plus f) where () = liftFinal2 () instance Plus (Final Plus f) where zero = liftFinal0 zero -- | @since 0.3.0.0 instance Contravariant (Final Contravariant f) where contramap f = liftFinal1 (contramap f) -- | @since 0.3.0.0 instance Contravariant (Final Divise f) where contramap f = liftFinal1 (contramap f) -- | @since 0.3.0.0 instance Divise (Final Divise f) where divise f = liftFinal2 (divise f) -- | @since 0.3.0.0 instance Contravariant (Final Divisible f) where contramap f = liftFinal1 (contramap f) -- | @since 0.3.0.0 instance Divise (Final Divisible f) where divise f = liftFinal2 (divide f) -- | @since 0.3.0.0 instance Divisible (Final Divisible f) where divide f = liftFinal2 (divide f) conquer = liftFinal0 conquer -- | @since 0.3.0.0 instance Contravariant (Final Decide f) where contramap f = liftFinal1 (contramap f) -- | @since 0.3.0.0 instance Decide (Final Decide f) where decide f = liftFinal2 (decide f) -- | @since 0.3.0.0 instance Contravariant (Final Conclude f) where contramap f = liftFinal1 (contramap f) -- | @since 0.3.0.0 instance Decide (Final Conclude f) where decide f = liftFinal2 (decide f) -- | @since 0.3.0.0 instance Conclude (Final Conclude f) where conclude f = liftFinal0 (conclude f) -- | @since 0.3.0.0 instance Contravariant (Final Decidable f) where contramap f = liftFinal1 (contramap f) -- | @since 0.3.0.0 instance Divisible (Final Decidable f) where divide f = liftFinal2 (divide f) conquer = liftFinal0 conquer -- | @since 0.3.0.0 instance Decide (Final Decidable f) where decide f = liftFinal2 (choose f) -- | @since 0.3.0.0 instance Conclude (Final Decidable f) where conclude f = liftFinal0 (lose f) -- | @since 0.3.0.0 instance Decidable (Final Decidable f) where choose f = liftFinal2 (choose f) lose f = liftFinal0 (lose f) -- | @since 0.3.0.0 instance Invariant (Final Invariant f) where invmap f g = liftFinal1 (invmap f g) -- | @since 0.4.0.0 instance Invariant (Final Inply f) where invmap f g = liftFinal1 (invmap f g) -- | @since 0.4.0.0 instance Inply (Final Inply f) where gather f g = liftFinal2 (gather f g) gathered = liftFinal2 gathered -- | @since 0.4.0.0 instance Invariant (Final Inplicative f) where invmap f g = liftFinal1 (invmap f g) -- | @since 0.4.0.0 instance Inply (Final Inplicative f) where gather f g = liftFinal2 (gather f g) gathered = liftFinal2 gathered -- | @since 0.4.0.0 instance Inplicative (Final Inplicative f) where knot x = liftFinal0 (knot x) -- | @since 0.4.0.0 instance Invariant (Final Inalt f) where invmap f g = liftFinal1 (invmap f g) -- | @since 0.4.0.0 instance Inalt (Final Inalt f) where swerve f g h = liftFinal2 (swerve f g h) swerved = liftFinal2 swerved -- | @since 0.4.0.0 instance Invariant (Final Inplus f) where invmap f g = liftFinal1 (invmap f g) -- | @since 0.4.0.0 instance Inalt (Final Inplus f) where swerve f g h = liftFinal2 (swerve f g h) swerved = liftFinal2 swerved -- | @since 0.4.0.0 instance Inplus (Final Inplus f) where reject f = liftFinal0 (reject f) -- | @since 0.4.0.0 instance Invariant (Final Internative f) where invmap f g = liftFinal1 (invmap f g) -- | @since 0.4.0.0 instance Inply (Final Internative f) where gather f g = liftFinal2 (gather f g) gathered = liftFinal2 gathered -- | @since 0.4.0.0 instance Inplicative (Final Internative f) where knot x = liftFinal0 (knot x) -- | @since 0.4.0.0 instance Inalt (Final Internative f) where swerve f g h = liftFinal2 (swerve f g h) swerved = liftFinal2 swerved -- | @since 0.4.0.0 instance Inplus (Final Internative f) where reject f = liftFinal0 (reject f) -- | Re-interpret the context under a 'Final'. hoistFinalC :: (forall g x. (c g => g x) -> (d g => g x)) -> Final c f a -> Final d f a hoistFinalC f (Final x) = Final $ \r -> f (x (\y -> f (r y))) instance HFunctor (Final c) where hmap f x = Final $ \r -> runFinal x (r . f) instance Inject (Final c) where inject x = Final $ \f -> f x instance c f => Interpret (Final c) f where retract x = runFinal x id interpret f x = runFinal x f -- | "Finalize" an 'Interpret' instance. -- -- @ -- toFinal :: 'Coyoneda' f '~>' 'Final' 'Functor' f -- toFinal :: 'Ap' f '~>' 'Final' 'Applicative' f -- toFinal :: 'Alt' f '~>' 'Final' 'Alternative' f -- toFinal :: 'Free' f '~>' 'Final' 'Monad' f -- toFinal :: 'Lift' f '~>' 'Final' 'Pointed' f -- toFinal :: 'ListF' f '~>' 'Final' 'Plus' f -- @ -- -- Note that the instance of @c@ for @'Final' c@ must be defined. -- -- This operation can potentially /forget/ structure in @t@. For example, -- we have: -- -- @ -- 'toFinal' :: 'Control.Applicative.Step.Steps' f ~> 'Final' 'Alt' f -- @ -- -- In this process, we lose the "positional" structure of -- 'Control.Applicative.Step.Steps'. -- -- In the case where 'toFinal' doesn't lose any information, this will form -- an isomorphism with 'fromFinal', and @t@ is known as the "Free @c@". -- For such a situation, @t@ will have a 'FreeOf' instance. toFinal :: Interpret t (Final c f) => t f ~> Final c f toFinal = interpret inject -- | "Concretize" a 'Final'. -- -- @ -- fromFinal :: 'Final' 'Functor' f '~>' 'Coyoneda' f -- fromFinal :: 'Final' 'Applicative' f '~>' 'Ap' f -- fromFinal :: 'Final' 'Alternative' f '~>' 'Alt' f -- fromFinal :: 'Final' 'Monad' f '~>' 'Free' f -- fromFinal :: 'Final' 'Pointed' f '~>' 'Lift' f -- fromFinal :: 'Final' 'Plus' f '~>' 'ListF' f -- @ -- -- This can be useful because 'Final' doesn't have a concrete structure -- that you can pattern match on and inspect, but @t@ might. -- -- In the case that this forms an isomorphism with 'toFinal', the @t@ will -- have an instance of 'FreeOf'. fromFinal :: (Inject t, c (t f)) => Final c f ~> t f fromFinal = interpret inject -- | A typeclass associating a free structure with the typeclass it is free -- on. -- -- This essentially lists instances of 'Interpret' where a "trip" through -- 'Final' will leave it unchanged. -- -- @ -- 'fromFree' . 'toFree' == id -- 'toFree' . 'fromFree' == id -- @ -- -- This can be useful because 'Final' doesn't have a concrete structure -- that you can pattern match on and inspect, but @t@ might. This lets you -- work on a concrete structure if you desire. class FreeOf c t | t -> c where -- | What "type" of functor is expected: should be either -- 'Unconstrained', 'Functor', 'Contravariant', or 'Invariant'. -- -- @since 0.3.0.0 type FreeFunctorBy t :: (Type -> Type) -> Constraint type FreeFunctorBy t = Unconstrained fromFree :: t f ~> Final c f toFree :: FreeFunctorBy t f => Final c f ~> t f default fromFree :: Interpret t (Final c f) => t f ~> Final c f fromFree = toFinal default toFree :: (Inject t, c (t f)) => Final c f ~> t f toFree = fromFinal -- | The isomorphism between a free structure and its encoding as 'Final'. finalizing :: (FreeOf c t, FreeFunctorBy t f) => t f <~> Final c f finalizing = isoF fromFree toFree instance FreeOf Functor Coyoneda -- | @since 0.3.0.0 instance FreeOf Contravariant CCY.Coyoneda instance FreeOf Applicative Ap instance FreeOf Apply Ap1 instance FreeOf Applicative FAF.Ap instance FreeOf Alternative Alt.Alt instance FreeOf Monad Free instance FreeOf Bind Free1 instance FreeOf Pointed Lift instance FreeOf Pointed MaybeApply -- | This could also be @'FreeOf' 'Divise'@ if @'FreeFunctorBy' 'NonEmptyF' -- ~ 'Contravariant'@. However, there isn't really a way to express this -- at the moment. instance FreeOf Alt NonEmptyF where type FreeFunctorBy NonEmptyF = Functor -- | This could also be @'FreeOf' 'Divisible'@ if @'FreeFunctorBy' 'ListF' -- ~ 'Contravariant'@. However, there isn't really a way to express this -- at the moment. instance FreeOf Plus ListF where type FreeFunctorBy ListF = Functor -- | @since 0.3.0.0 instance FreeOf Divise Div1 -- | @since 0.3.0.0 instance FreeOf Divisible Div -- | @since 0.3.0.0 instance FreeOf Decide Dec1 -- | @since 0.3.0.0 instance FreeOf Conclude Dec -- | @since 0.4.0.0 instance FreeOf Inply DivAp1 where type FreeFunctorBy DivAp1 = Invariant -- | @since 0.4.0.0 instance FreeOf Inplicative DivAp -- | @since 0.4.0.0 instance FreeOf Inalt DecAlt1 where type FreeFunctorBy DecAlt1 = Invariant -- | @since 0.4.0.0 instance FreeOf Inplus DecAlt instance FreeOf Unconstrained IdentityT