{-# LANGUAGE ExplicitNamespaces #-} -- | Simple operations on generic representations: -- modify 'GHC.Generics.Generic' instances to tweak the behavior of generic -- implementations as if you had declared a slightly different type. -- -- This module provides the following microsurgeries: -- -- - 'RenameFields': rename the fields of a record type. -- - 'RenameConstrs': rename the constructors. -- - 'OnFields': apply a type constructor @f :: Type -> Type@ to every field. -- - 'CopyRep': use the generic representation of another type of the same shape. -- - 'Typeage': treat a @newtype@ as a @data@ type. -- - 'Derecordify': treat a type as if it weren't a record. -- -- More complex surgeries can be found in -- <https://hackage.haskell.org/package/generic-data-surgery generic-data-surgery> -- but also, perhaps surprisingly, -- in <https://hackage.haskell.org/package/generic-lens generic-lens> -- (read more about this just below) and -- <https://hackage.haskell.org/package/one-liner one-liner>. -- -- Surgeries can be used: -- -- - to derive type class instances with the @DerivingVia@ extension, -- using the 'Surgery' or 'ProductSurgery' type synonyms -- (for classes with instances for 'Generically' or 'GenericProduct'); -- - with the 'Data' \"synthetic type\" for more involved transformations, -- for example using lenses in the next section. module Generic.Data.Microsurgery ( -- * Surgeries with generic-lens -- $lens-surgery -- * Deriving via Surgery , ProductSurgery , Surgeries , ProductSurgeries , Surgery'(..) , GSurgery , Generically(..) , GenericProduct(..) -- * Synthetic types , Data , toData , fromData , onData -- * Microsurgeries -- -- | Each microsurgery consists of a type family @F@ to modify metadata in -- GHC Generic representations, and two mappings (that are just -- 'Data.Coerce.coerce'): -- -- @ -- f :: 'Data' ('GHC.Generics.Rep' a) p -> 'Data' (F ('GHC.Generics.Rep' a)) p -- unf :: 'Data' (F ('GHC.Generics.Rep' a)) p -> 'Data' ('GHC.Generics.Rep' a) p -- @ -- -- Use @f@ with 'toData' for generic functions that consume generic values, -- and @unf@ with 'fromData' for generic functions that produce generic -- values. Abstract example: -- -- @ -- genericSerialize . f . 'toData' -- 'fromData' . unf . genericDeserialize -- @ -- ** Renaming of fields and constructors -- | These surgeries require @DataKinds@ and @TypeApplications@. -- -- ==== Examples -- -- @ -- {-# LANGUAGE -- DataKinds, -- TypeApplications #-} -- -- -- Rename all fields to \"foo\" -- 'renameFields' \@('SConst' \"foo\") -- -- -- Rename constructor \"Bar\" to \"Baz\", and leave all others the same -- 'renameConstrs' \@('SRename' '[ '(\"Bar\", \"Baz\") ] 'SId') -- @ , RenameFields() , renameFields , unrenameFields , RenameConstrs() , renameConstrs , unrenameConstrs -- *** Renaming functions , type (@@) , SId , SError , SConst , SRename -- ** Wrap every field in a type constructor -- | Give every field a type @f FieldType@ (where @f@ is a parameter), to -- obtain a family of types with a shared structure. Some applications of -- this \"higher-kindification\" technique may be found in the following -- blogposts: -- -- - https://www.benjamin.pizza/posts/2017-12-15-functor-functors.html -- - https://reasonablypolymorphic.com/blog/higher-kinded-data/ -- -- See also the file @test/one-liner-surgery.hs@ in this package for an -- example of using one-liner and generic-lens with a synthetic type -- constructed with 'DOnFields'. -- -- === Example -- -- Derive 'Data.Semigroup.Semigroup' and 'Data.Monoid.Monoid' for -- a product of 'Prelude.Num' types: -- -- @ -- data TwoCounters = MkTwoCounters { c1 :: Int, c2 :: Int } -- deriving 'GHC.Generics.Generic' -- deriving ('Data.Semigroup.Semigroup', 'Data.Monoid.Monoid') -- via ('ProductSurgery' ('OnFields' 'Data.Monoid.Sum') TwoCounters) -- Surgery here -- @ -- -- ==== __Extensions and imports__ -- -- @ -- {-\# LANGUAGE DeriveGeneric, DerivingVia \#-} -- import "Data.Monoid" ('Data.Monoid.Sum'(..)) -- Constructors must be in scope -- import "GHC.Generics" ('GHC.Generics.Generic') -- import "Generic.Data.Microsurgery" -- ( 'ProductSurgery' -- , 'OnFields' -- , 'GenericProduct'(..) -- Constructors must be in scope -- , 'Surgery''(..) -- -- ) -- @ , OnFields() , DOnFields , OnField() , type (%~) , Cat() , DCat() -- ** Substitute a generic representation from another type -- | -- === Example -- -- Derive 'Data.Semigroup.Semigroup' and 'Data.Monoid.Monoid' for -- a product of 'Prelude.Num' types, but using 'Data.Monoid.Sum' for one -- field and 'Data.Monoid.Product' for the other. -- In other words, we use the fact that @Polar a@ below is isomorphic to -- the monoid @('Data.Monoid.Product' a, 'Data.Monoid.Sum' a)@. -- -- @ -- {-\# LANGUAGE DeriveGeneric, DerivingVia \#-} -- import "Data.Monoid" ('Data.Monoid.Sum'(..), 'Data.Monoid.Product'(..)) -- Constructors must be in scope -- import "GHC.Generics" ('GHC.Generics.Generic') -- import "Generic.Data.Microsurgery" -- ( 'ProductSurgery' -- , 'CopyRep' -- , 'GenericProduct'(..) -- Constructors must be in scope -- , 'Surgery''(..) -- -- ) -- -- data Polar a = Exp { modulus :: a, argument :: a } -- deriving 'GHC.Generics.Generic' -- deriving ('Data.Semigroup.Semigroup', 'Data.Monoid.Monoid') -- via ('ProductSurgery' ('CopyRep' ('Data.Monoid.Product' a, 'Data.Monoid.Sum' a)) (Polar a)) -- Surgery here -- @ -- -- That is the polar representation of a complex number: -- -- > z = modulus * exp(i * argument) -- -- The product of complex numbers defines a monoid isomorphic to -- the monoid product @(Product Double, Sum Double)@ -- (multiply the moduli, add the arguments). -- -- @ -- z1 'Data.Semigroup.<>' z2 -- = z1 'Prelude.*' z2 -- = Exp (modulus z1 'Prelude.*' modulus z2) (argument z1 'Prelude.+' argument z2) -- -- 'Data.Monoid.mempty' = 1 = Exp 1 0 -- @ , CopyRep , copyRep , uncopyRep -- ** Type aging ("denewtypify") , Typeage() , typeage , untypeage -- ** Derecordify , Derecordify() , derecordify , underecordify ) where import Generic.Data.Internal.Data import Generic.Data.Internal.Generically import Generic.Data.Internal.Microsurgery -- $lens-surgery -- One common and simple situation is to modify the type of some fields, -- for example wrapping them in a newtype. -- -- We can leverage the @generic-lens@ library, with the two functions below. -- -- @ -- -- Lens to a field named @fd@ in a Generic record. -- field_ :: HasField_ fd s t a b => Lens s t a b -- from generic-lens -- -- -- Update a value through a lens (ASetter is a specialization of Lens). -- over :: ASetter s t a b -> (a -> b) -> s -> t -- from lens or microlens -- @ -- -- For example, here is a record type: -- -- @ -- data R = R { myField :: Int } deriving 'GHC.Generics.Generic' -- @ -- -- The function @over (field_ \@\"myField\") 'Generic.Data.Opaque'@ -- applies the newtype constructor 'Generic.Data.Opaque' to the field -- @\"myField\"@, but this actually doesn't typecheck as-is. With a bit of help -- from this module, we can wrap that function as follows: -- -- @ -- 'onData' (over (field_ \@\"myField\") 'Generic.Data.Opaque') . 'toData' -- :: R -> 'Data' _ _ -- type arguments hidden -- @ -- -- The result has a type @'Data' _ _@, that from the point of view of "GHC.Generics" -- looks just like @R@ but with the field @\"myField\"@ wrapped in -- 'Generic.Data.Opaque', as if we had defined: -- -- @ -- data R = R { myField :: 'Generic.Data.Opaque' Int } deriving 'GHC.Generics.Generic' -- @ -- -- ==== Example usage -- -- We derive an instance of 'Show' that hides the @\"myField\"@ field, -- whatever its type. -- -- @ -- instance 'Show' R where -- 'showsPrec' n = 'Generic.Data.gshowsPrec' n -- . 'onData' (over (field_ \@\"myField\") 'Generic.Data.Opaque') -- . 'toData' -- -- 'show' (R 3) = \"R {myField = _}\" -- @