module Generics.SOP.BasicFunctors
(
K(..)
, unK
, I(..)
, unI
, (:.:)(..)
, unComp
, mapII
, mapIK
, mapKI
, mapKK
, mapIII
, mapIIK
, mapIKI
, mapIKK
, mapKII
, mapKIK
, mapKKI
, mapKKK
) where
#if MIN_VERSION_base(4,8,0)
import Data.Monoid ((<>))
#else
import Control.Applicative
import Data.Foldable (Foldable(..))
import Data.Monoid (Monoid, mempty, (<>))
import Data.Traversable (Traversable(..))
#endif
import qualified GHC.Generics as GHC
import Data.Functor.Classes
#if MIN_VERSION_base(4,9,0)
#define LIFTED_CLASSES 1
#else
#if MIN_VERSION_transformers(0,5,0)
#define LIFTED_CLASSES 1
#else
#if MIN_VERSION_transformers_compat(0,5,0) && !MIN_VERSION_transformers(0,4,0)
#define LIFTED_CLASSES 1
#endif
#endif
#endif
import Control.DeepSeq (NFData(..))
#if MIN_VERSION_deepseq(1,4,3)
import Control.DeepSeq (NFData1(..), NFData2(..))
#endif
newtype K (a :: *) (b :: k) = K a
#if MIN_VERSION_base(4,7,0)
deriving (Functor, Foldable, Traversable, GHC.Generic)
#else
deriving (GHC.Generic)
instance Functor (K a) where
fmap _ (K x) = K x
instance Foldable (K a) where
foldr _ z (K _) = z
foldMap _ (K _) = mempty
instance Traversable (K a) where
traverse _ (K x) = pure (K x)
#endif
#ifdef LIFTED_CLASSES
instance Eq2 K where
liftEq2 eq _ (K x) (K y) = eq x y
instance Ord2 K where
liftCompare2 comp _ (K x) (K y) = comp x y
instance Read2 K where
liftReadsPrec2 rp _ _ _ = readsData $
readsUnaryWith rp "K" K
instance Show2 K where
liftShowsPrec2 sp _ _ _ d (K x) = showsUnaryWith sp "K" d x
instance (Eq a) => Eq1 (K a) where
liftEq = liftEq2 (==)
instance (Ord a) => Ord1 (K a) where
liftCompare = liftCompare2 compare
instance (Read a) => Read1 (K a) where
liftReadsPrec = liftReadsPrec2 readsPrec readList
instance (Show a) => Show1 (K a) where
liftShowsPrec = liftShowsPrec2 showsPrec showList
#else
instance (Eq a) => Eq1 (K a) where
eq1 (K x) (K y) = x == y
instance (Ord a) => Ord1 (K a) where
compare1 (K x) (K y) = compare x y
instance (Read a) => Read1 (K a) where
readsPrec1 = readsData $ readsUnary "K" K
instance (Show a) => Show1 (K a) where
showsPrec1 d (K x) = showsUnary "K" d x
#endif
instance (Eq a) => Eq (K a b) where
K x == K y = x == y
instance (Ord a) => Ord (K a b) where
compare (K x) (K y) = compare x y
#ifdef LIFTED_CLASSES
instance (Read a) => Read (K a b) where
readsPrec = readsData $ readsUnaryWith readsPrec "K" K
instance (Show a) => Show (K a b) where
showsPrec d (K x) = showsUnaryWith showsPrec "K" d x
#else
instance (Read a) => Read (K a b) where
readsPrec = readsData $ readsUnary "K" K
instance (Show a) => Show (K a b) where
showsPrec d (K x) = showsUnary "K" d x
#endif
instance Monoid a => Applicative (K a) where
pure _ = K mempty
K x <*> K y = K (x <> y)
unK :: K a b -> a
unK (K x) = x
newtype I (a :: *) = I a
#if MIN_VERSION_base(4,7,0)
deriving (Functor, Foldable, Traversable, GHC.Generic)
#else
deriving (GHC.Generic)
instance Functor I where
fmap f (I x) = I (f x)
instance Foldable I where
foldr f z (I x) = f x z
foldMap f (I x) = f x
instance Traversable I where
traverse f (I x) = fmap I (f x)
#endif
instance Applicative I where
pure = I
I f <*> I x = I (f x)
instance Monad I where
return = I
I x >>= f = f x
#ifdef LIFTED_CLASSES
instance Eq1 I where
liftEq eq (I x) (I y) = eq x y
instance Ord1 I where
liftCompare comp (I x) (I y) = comp x y
instance Read1 I where
liftReadsPrec rp _ = readsData $
readsUnaryWith rp "I" I
instance Show1 I where
liftShowsPrec sp _ d (I x) = showsUnaryWith sp "I" d x
#else
instance Eq1 I where
eq1 (I x) (I y) = x == y
instance Ord1 I where
compare1 (I x) (I y) = compare x y
instance Read1 I where
readsPrec1 = readsData $ readsUnary "I" I
instance Show1 I where
showsPrec1 d (I x) = showsUnary "I" d x
#endif
instance (Eq a) => Eq (I a) where (==) = eq1
instance (Ord a) => Ord (I a) where compare = compare1
instance (Read a) => Read (I a) where readsPrec = readsPrec1
instance (Show a) => Show (I a) where showsPrec = showsPrec1
unI :: I a -> a
unI (I x) = x
newtype (:.:) (f :: l -> *) (g :: k -> l) (p :: k) = Comp (f (g p))
deriving (GHC.Generic)
infixr 7 :.:
instance (Functor f, Functor g) => Functor (f :.: g) where
fmap f (Comp x) = Comp (fmap (fmap f) x)
instance (Applicative f, Applicative g) => Applicative (f :.: g) where
pure x = Comp (pure (pure x))
Comp f <*> Comp x = Comp ((<*>) <$> f <*> x)
instance (Foldable f, Foldable g) => Foldable (f :.: g) where
foldMap f (Comp t) = foldMap (foldMap f) t
instance (Traversable f, Traversable g) => Traversable (f :.: g) where
traverse f (Comp t) = Comp <$> traverse (traverse f) t
#ifdef LIFTED_CLASSES
instance (Eq1 f, Eq1 g) => Eq1 (f :.: g) where
liftEq eq (Comp x) (Comp y) = liftEq (liftEq eq) x y
instance (Ord1 f, Ord1 g) => Ord1 (f :.: g) where
liftCompare comp (Comp x) (Comp y) =
liftCompare (liftCompare comp) x y
instance (Read1 f, Read1 g) => Read1 (f :.: g) where
liftReadsPrec rp rl = readsData $
readsUnaryWith (liftReadsPrec rp' rl') "Comp" Comp
where
rp' = liftReadsPrec rp rl
rl' = liftReadList rp rl
instance (Show1 f, Show1 g) => Show1 (f :.: g) where
liftShowsPrec sp sl d (Comp x) =
showsUnaryWith (liftShowsPrec sp' sl') "Comp" d x
where
sp' = liftShowsPrec sp sl
sl' = liftShowList sp sl
instance (Eq1 f, Eq1 g, Eq a) => Eq ((f :.: g) a) where (==) = eq1
instance (Ord1 f, Ord1 g, Ord a) => Ord ((f :.: g) a) where compare = compare1
instance (Read1 f, Read1 g, Read a) => Read ((f :.: g) a) where readsPrec = readsPrec1
instance (Show1 f, Show1 g, Show a) => Show ((f :.: g) a) where showsPrec = showsPrec1
#else
newtype Apply g a = Apply (g a)
getApply :: Apply g a -> g a
getApply (Apply x) = x
instance (Eq1 g, Eq a) => Eq (Apply g a) where
Apply x == Apply y = eq1 x y
instance (Ord1 g, Ord a) => Ord (Apply g a) where
compare (Apply x) (Apply y) = compare1 x y
instance (Read1 g, Read a) => Read (Apply g a) where
readsPrec d s = [(Apply a, t) | (a, t) <- readsPrec1 d s]
instance (Show1 g, Show a) => Show (Apply g a) where
showsPrec d (Apply x) = showsPrec1 d x
instance (Functor f, Eq1 f, Eq1 g, Eq a) => Eq ((f :.: g) a) where
Comp x == Comp y = eq1 (fmap Apply x) (fmap Apply y)
instance (Functor f, Ord1 f, Ord1 g, Ord a) => Ord ((f :.: g) a) where
compare (Comp x) (Comp y) = compare1 (fmap Apply x) (fmap Apply y)
instance (Functor f, Read1 f, Read1 g, Read a) => Read ((f :.: g) a) where
readsPrec = readsData $ readsUnary1 "Comp" (Comp . fmap getApply)
instance (Functor f, Show1 f, Show1 g, Show a) => Show ((f :.: g) a) where
showsPrec d (Comp x) = showsUnary1 "Comp" d (fmap Apply x)
instance (Functor f, Eq1 f, Eq1 g) => Eq1 (f :.: g) where eq1 = (==)
instance (Functor f, Ord1 f, Ord1 g) => Ord1 (f :.: g) where
compare1 = compare
instance (Functor f, Read1 f, Read1 g) => Read1 (f :.: g) where
readsPrec1 = readsPrec
instance (Functor f, Show1 f, Show1 g) => Show1 (f :.: g) where
showsPrec1 = showsPrec
#endif
instance NFData a => NFData (I a) where
rnf (I x) = rnf x
instance NFData a => NFData (K a b) where
rnf (K x) = rnf x
instance NFData (f (g a)) => NFData ((f :.: g) a) where
rnf (Comp x) = rnf x
#if MIN_VERSION_deepseq(1,4,3)
instance NFData1 I where
liftRnf r (I x) = r x
instance NFData a => NFData1 (K a) where
liftRnf _ (K x) = rnf x
instance NFData2 K where
liftRnf2 r _ (K x) = r x
instance (NFData1 f, NFData1 g) => NFData1 (f :.: g) where
liftRnf r (Comp x) = liftRnf (liftRnf r) x
#endif
unComp :: (f :.: g) p -> f (g p)
unComp (Comp x) = x
mapII :: (a -> b) -> I a -> I b
mapII = \ f (I a) -> I (f a)
mapIK :: (a -> b) -> I a -> K b c
mapIK = \ f (I a) -> K (f a)
mapKI :: (a -> b) -> K a c -> I b
mapKI = \ f (K a) -> I (f a)
mapKK :: (a -> b) -> K a c -> K b d
mapKK = \ f (K a) -> K (f a)
mapIII :: (a -> b -> c) -> I a -> I b -> I c
mapIII = \ f (I a) (I b) -> I (f a b)
mapIIK :: (a -> b -> c) -> I a -> I b -> K c d
mapIIK = \ f (I a) (I b) -> K (f a b)
mapIKI :: (a -> b -> c) -> I a -> K b d -> I c
mapIKI = \ f (I a) (K b) -> I (f a b)
mapIKK :: (a -> b -> c) -> I a -> K b d -> K c e
mapIKK = \ f (I a) (K b) -> K (f a b)
mapKII :: (a -> b -> c) -> K a d -> I b -> I c
mapKII = \ f (K a) (I b) -> I (f a b)
mapKIK :: (a -> b -> c) -> K a d -> I b -> K c e
mapKIK = \ f (K a) (I b) -> K (f a b)
mapKKI :: (a -> b -> c) -> K a d -> K b e -> I c
mapKKI = \ f (K a) (K b) -> I (f a b)
mapKKK :: (a -> b -> c) -> K a d -> K b e -> K c f
mapKKK = \ f (K a) (K b) -> K (f a b)