{- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 -} {-# LANGUAGE CPP #-} module CoreOpt ( -- ** Simple expression optimiser simpleOptPgm, simpleOptExpr, simpleOptExprWith, -- ** Join points joinPointBinding_maybe, joinPointBindings_maybe, -- ** Predicates on expressions exprIsConApp_maybe, exprIsLiteral_maybe, exprIsLambda_maybe, -- ** Coercions and casts pushCoArg, pushCoValArg, pushCoTyArg, collectBindersPushingCo ) where #include "HsVersions.h" import CoreArity( joinRhsArity, etaExpandToJoinPoint ) import CoreSyn import CoreSubst import CoreUtils import CoreFVs import PprCore ( pprCoreBindings, pprRules ) import OccurAnal( occurAnalyseExpr, occurAnalysePgm ) import Literal ( Literal(MachStr) ) import Id import Var ( varType ) import VarSet import VarEnv import DataCon import OptCoercion ( optCoercion ) import Type hiding ( substTy, extendTvSubst, extendCvSubst, extendTvSubstList , isInScope, substTyVarBndr, cloneTyVarBndr ) import Coercion hiding ( substCo, substCoVarBndr ) import TyCon ( tyConArity ) import TysWiredIn import PrelNames import BasicTypes import Module ( Module ) import ErrUtils import DynFlags import Outputable import Pair import Util import Maybes ( orElse ) import FastString import Data.List import qualified Data.ByteString as BS {- ************************************************************************ * * The Simple Optimiser * * ************************************************************************ Note [The simple optimiser] ~~~~~~~~~~~~~~~~~~~~~~~~~~~ The simple optimiser is a lightweight, pure (non-monadic) function that rapidly does a lot of simple optimisations, including - inlining things that occur just once, or whose RHS turns out to be trivial - beta reduction - case of known constructor - dead code elimination It does NOT do any call-site inlining; it only inlines a function if it can do so unconditionally, dropping the binding. It thereby guarantees to leave no un-reduced beta-redexes. It is careful to follow the guidance of "Secrets of the GHC inliner", and in particular the pre-inline-unconditionally and post-inline-unconditionally story, to do effective beta reduction on functions called precisely once, without repeatedly optimising the same expression. In fact, the simple optimiser is a good example of this little dance in action; the full Simplifier is a lot more complicated. -} simpleOptExpr :: CoreExpr -> CoreExpr -- See Note [The simple optimiser] -- Do simple optimisation on an expression -- The optimisation is very straightforward: just -- inline non-recursive bindings that are used only once, -- or where the RHS is trivial -- -- We also inline bindings that bind a Eq# box: see -- See Note [Getting the map/coerce RULE to work]. -- -- Also we convert functions to join points where possible (as -- the occurrence analyser does most of the work anyway). -- -- The result is NOT guaranteed occurrence-analysed, because -- in (let x = y in ....) we substitute for x; so y's occ-info -- may change radically simpleOptExpr expr = -- pprTrace "simpleOptExpr" (ppr init_subst $$ ppr expr) simpleOptExprWith init_subst expr where init_subst = mkEmptySubst (mkInScopeSet (exprFreeVars expr)) -- It's potentially important to make a proper in-scope set -- Consider let x = ..y.. in \y. ...x... -- Then we should remember to clone y before substituting -- for x. It's very unlikely to occur, because we probably -- won't *be* substituting for x if it occurs inside a -- lambda. -- -- It's a bit painful to call exprFreeVars, because it makes -- three passes instead of two (occ-anal, and go) simpleOptExprWith :: Subst -> InExpr -> OutExpr -- See Note [The simple optimiser] simpleOptExprWith subst expr = simple_opt_expr init_env (occurAnalyseExpr expr) where init_env = SOE { soe_inl = emptyVarEnv, soe_subst = subst } ---------------------- simpleOptPgm :: DynFlags -> Module -> CoreProgram -> [CoreRule] -> [CoreVect] -> IO (CoreProgram, [CoreRule], [CoreVect]) -- See Note [The simple optimiser] simpleOptPgm dflags this_mod binds rules vects = do { dumpIfSet_dyn dflags Opt_D_dump_occur_anal "Occurrence analysis" (pprCoreBindings occ_anald_binds $$ pprRules rules ); ; return (reverse binds', rules', vects') } where occ_anald_binds = occurAnalysePgm this_mod (\_ -> False) {- No rules active -} rules vects emptyVarSet binds (final_env, binds') = foldl do_one (emptyEnv, []) occ_anald_binds final_subst = soe_subst final_env rules' = substRulesForImportedIds final_subst rules vects' = substVects final_subst vects -- We never unconditionally inline into rules, -- hence pasing just a substitution do_one (env, binds') bind = case simple_opt_bind env bind of (env', Nothing) -> (env', binds') (env', Just bind') -> (env', bind':binds') -- In these functions the substitution maps InVar -> OutExpr ---------------------- type SimpleClo = (SimpleOptEnv, InExpr) data SimpleOptEnv = SOE { soe_inl :: IdEnv SimpleClo -- Deals with preInlineUnconditionally; things -- that occur exactly once and are inlined -- without having first been simplified , soe_subst :: Subst -- Deals with cloning; includes the InScopeSet } instance Outputable SimpleOptEnv where ppr (SOE { soe_inl = inl, soe_subst = subst }) = text "SOE {" <+> vcat [ text "soe_inl =" <+> ppr inl , text "soe_subst =" <+> ppr subst ] <+> text "}" emptyEnv :: SimpleOptEnv emptyEnv = SOE { soe_inl = emptyVarEnv , soe_subst = emptySubst } soeZapSubst :: SimpleOptEnv -> SimpleOptEnv soeZapSubst (SOE { soe_subst = subst }) = SOE { soe_inl = emptyVarEnv, soe_subst = zapSubstEnv subst } soeSetInScope :: SimpleOptEnv -> SimpleOptEnv -> SimpleOptEnv -- Take in-scope set from env1, and the rest from env2 soeSetInScope (SOE { soe_subst = subst1 }) env2@(SOE { soe_subst = subst2 }) = env2 { soe_subst = setInScope subst2 (substInScope subst1) } --------------- simple_opt_clo :: SimpleOptEnv -> SimpleClo -> OutExpr simple_opt_clo env (e_env, e) = simple_opt_expr (soeSetInScope env e_env) e simple_opt_expr :: SimpleOptEnv -> InExpr -> OutExpr simple_opt_expr env expr = go expr where subst = soe_subst env in_scope = substInScope subst in_scope_env = (in_scope, simpleUnfoldingFun) go (Var v) | Just clo <- lookupVarEnv (soe_inl env) v = simple_opt_clo env clo | otherwise = lookupIdSubst (text "simpleOptExpr") (soe_subst env) v go (App e1 e2) = simple_app env e1 [(env,e2)] go (Type ty) = Type (substTy subst ty) go (Coercion co) = Coercion (optCoercion (getTCvSubst subst) co) go (Lit lit) = Lit lit go (Tick tickish e) = mkTick (substTickish subst tickish) (go e) go (Cast e co) | isReflCo co' = go e | otherwise = Cast (go e) co' where co' = optCoercion (getTCvSubst subst) co go (Let bind body) = case simple_opt_bind env bind of (env', Nothing) -> simple_opt_expr env' body (env', Just bind) -> Let bind (simple_opt_expr env' body) go lam@(Lam {}) = go_lam env [] lam go (Case e b ty as) -- See Note [Getting the map/coerce RULE to work] | isDeadBinder b , Just (con, _tys, es) <- exprIsConApp_maybe in_scope_env e' , Just (altcon, bs, rhs) <- findAlt (DataAlt con) as = case altcon of DEFAULT -> go rhs _ -> foldr wrapLet (simple_opt_expr env' rhs) mb_prs where (env', mb_prs) = mapAccumL simple_out_bind env $ zipEqual "simpleOptExpr" bs es -- Note [Getting the map/coerce RULE to work] | isDeadBinder b , [(DEFAULT, _, rhs)] <- as , isCoercionType (varType b) , (Var fun, _args) <- collectArgs e , fun `hasKey` coercibleSCSelIdKey -- without this last check, we get #11230 = go rhs | otherwise = Case e' b' (substTy subst ty) (map (go_alt env') as) where e' = go e (env', b') = subst_opt_bndr env b ---------------------- go_alt env (con, bndrs, rhs) = (con, bndrs', simple_opt_expr env' rhs) where (env', bndrs') = subst_opt_bndrs env bndrs ---------------------- -- go_lam tries eta reduction go_lam env bs' (Lam b e) = go_lam env' (b':bs') e where (env', b') = subst_opt_bndr env b go_lam env bs' e | Just etad_e <- tryEtaReduce bs e' = etad_e | otherwise = mkLams bs e' where bs = reverse bs' e' = simple_opt_expr env e ---------------------- -- simple_app collects arguments for beta reduction simple_app :: SimpleOptEnv -> InExpr -> [SimpleClo] -> CoreExpr simple_app env (Var v) as | Just (env', e) <- lookupVarEnv (soe_inl env) v = simple_app (soeSetInScope env env') e as | let unf = idUnfolding v , isCompulsoryUnfolding (idUnfolding v) , isAlwaysActive (idInlineActivation v) -- See Note [Unfold compulsory unfoldings in LHSs] = simple_app (soeZapSubst env) (unfoldingTemplate unf) as | otherwise , let out_fn = lookupIdSubst (text "simple_app") (soe_subst env) v = finish_app env out_fn as simple_app env (App e1 e2) as = simple_app env e1 ((env, e2) : as) simple_app env (Lam b e) (a:as) = wrapLet mb_pr (simple_app env' e as) where (env', mb_pr) = simple_bind_pair env b Nothing a simple_app env (Tick t e) as -- Okay to do "(Tick t e) x ==> Tick t (e x)"? | t `tickishScopesLike` SoftScope = mkTick t $ simple_app env e as simple_app env e as = finish_app env (simple_opt_expr env e) as finish_app :: SimpleOptEnv -> OutExpr -> [SimpleClo] -> OutExpr finish_app _ fun [] = fun finish_app env fun (arg:args) = finish_app env (App fun (simple_opt_clo env arg)) args ---------------------- simple_opt_bind :: SimpleOptEnv -> InBind -> (SimpleOptEnv, Maybe OutBind) simple_opt_bind env (NonRec b r) = (env', case mb_pr of Nothing -> Nothing Just (b,r) -> Just (NonRec b r)) where (b', r') = joinPointBinding_maybe b r `orElse` (b, r) (env', mb_pr) = simple_bind_pair env b' Nothing (env,r') simple_opt_bind env (Rec prs) = (env'', res_bind) where res_bind = Just (Rec (reverse rev_prs')) prs' = joinPointBindings_maybe prs `orElse` prs (env', bndrs') = subst_opt_bndrs env (map fst prs') (env'', rev_prs') = foldl do_pr (env', []) (prs' `zip` bndrs') do_pr (env, prs) ((b,r), b') = (env', case mb_pr of Just pr -> pr : prs Nothing -> prs) where (env', mb_pr) = simple_bind_pair env b (Just b') (env,r) ---------------------- simple_bind_pair :: SimpleOptEnv -> InVar -> Maybe OutVar -> SimpleClo -> (SimpleOptEnv, Maybe (OutVar, OutExpr)) -- (simple_bind_pair subst in_var out_rhs) -- either extends subst with (in_var -> out_rhs) -- or returns Nothing simple_bind_pair env@(SOE { soe_inl = inl_env, soe_subst = subst }) in_bndr mb_out_bndr clo@(rhs_env, in_rhs) | Type ty <- in_rhs -- let a::* = TYPE ty in
, let out_ty = substTy (soe_subst rhs_env) ty = ASSERT( isTyVar in_bndr ) (env { soe_subst = extendTvSubst subst in_bndr out_ty }, Nothing) | Coercion co <- in_rhs , let out_co = optCoercion (getTCvSubst (soe_subst rhs_env)) co = ASSERT( isCoVar in_bndr ) (env { soe_subst = extendCvSubst subst in_bndr out_co }, Nothing) | pre_inline_unconditionally = (env { soe_inl = extendVarEnv inl_env in_bndr clo }, Nothing) | otherwise = simple_out_bind_pair env in_bndr mb_out_bndr (simple_opt_clo env clo) occ active stable_unf where stable_unf = isStableUnfolding (idUnfolding in_bndr) active = isAlwaysActive (idInlineActivation in_bndr) occ = idOccInfo in_bndr pre_inline_unconditionally :: Bool pre_inline_unconditionally | isCoVar in_bndr = False -- See Note [Do not inline CoVars unconditionally] | isExportedId in_bndr = False -- in SimplUtils | stable_unf = False | not active = False -- Note [Inline prag in simplOpt] | not (safe_to_inline occ) = False | otherwise = True -- Unconditionally safe to inline safe_to_inline :: OccInfo -> Bool safe_to_inline (IAmALoopBreaker {}) = False safe_to_inline IAmDead = True safe_to_inline occ@(OneOcc {}) = not (occ_in_lam occ) && occ_one_br occ safe_to_inline (ManyOccs {}) = False ------------------- simple_out_bind :: SimpleOptEnv -> (InVar, OutExpr) -> (SimpleOptEnv, Maybe (OutVar, OutExpr)) simple_out_bind env@(SOE { soe_subst = subst }) (in_bndr, out_rhs) | Type out_ty <- out_rhs = ASSERT( isTyVar in_bndr ) (env { soe_subst = extendTvSubst subst in_bndr out_ty }, Nothing) | Coercion out_co <- out_rhs = ASSERT( isCoVar in_bndr ) (env { soe_subst = extendCvSubst subst in_bndr out_co }, Nothing) | otherwise = simple_out_bind_pair env in_bndr Nothing out_rhs (idOccInfo in_bndr) True False ------------------- simple_out_bind_pair :: SimpleOptEnv -> InId -> Maybe OutId -> OutExpr -> OccInfo -> Bool -> Bool -> (SimpleOptEnv, Maybe (OutVar, OutExpr)) simple_out_bind_pair env in_bndr mb_out_bndr out_rhs occ_info active stable_unf | post_inline_unconditionally = ( env' { soe_subst = extendIdSubst (soe_subst env) in_bndr out_rhs } , Nothing) | otherwise = ( env', Just (out_bndr, out_rhs) ) where (env', bndr1) = case mb_out_bndr of Just out_bndr -> (env, out_bndr) Nothing -> subst_opt_bndr env in_bndr out_bndr = add_info env' in_bndr bndr1 post_inline_unconditionally :: Bool post_inline_unconditionally | not active = False | isWeakLoopBreaker occ_info = False -- If it's a loop-breaker of any kind, don't inline -- because it might be referred to "earlier" | stable_unf = False -- Note [Stable unfoldings and postInlineUnconditionally] | isExportedId in_bndr = False -- Note [Exported Ids and trivial RHSs] | exprIsTrivial out_rhs = True | coercible_hack = True | otherwise = False -- See Note [Getting the map/coerce RULE to work] coercible_hack | (Var fun, args) <- collectArgs out_rhs , Just dc <- isDataConWorkId_maybe fun , dc `hasKey` heqDataConKey || dc `hasKey` coercibleDataConKey = all exprIsTrivial args | otherwise = False {- Note [Exported Ids and trivial RHSs] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We obviously do not want to unconditionally inline an Id that is exported. In SimplUtils, Note [Top level and postInlineUnconditionally], we explain why we don't inline /any/ top-level things unconditionally, even trivial ones. But we do here! Why? In the simple optimiser * We do no rule rewrites * We do no call-site inlining Those differences obviate the reasons for not inlining a trivial rhs, and increase the benefit for doing so. So we unconditionally inline trivial rhss here. -} ---------------------- subst_opt_bndrs :: SimpleOptEnv -> [InVar] -> (SimpleOptEnv, [OutVar]) subst_opt_bndrs env bndrs = mapAccumL subst_opt_bndr env bndrs subst_opt_bndr :: SimpleOptEnv -> InVar -> (SimpleOptEnv, OutVar) subst_opt_bndr env bndr | isTyVar bndr = (env { soe_subst = subst_tv }, tv') | isCoVar bndr = (env { soe_subst = subst_cv }, cv') | otherwise = subst_opt_id_bndr env bndr where subst = soe_subst env (subst_tv, tv') = substTyVarBndr subst bndr (subst_cv, cv') = substCoVarBndr subst bndr subst_opt_id_bndr :: SimpleOptEnv -> InId -> (SimpleOptEnv, OutId) -- Nuke all fragile IdInfo, unfolding, and RULES; -- it gets added back later by add_info -- Rather like SimplEnv.substIdBndr -- -- It's important to zap fragile OccInfo (which CoreSubst.substIdBndr -- carefully does not do) because simplOptExpr invalidates it subst_opt_id_bndr (SOE { soe_subst = subst, soe_inl = inl }) old_id = (SOE { soe_subst = new_subst, soe_inl = new_inl }, new_id) where Subst in_scope id_subst tv_subst cv_subst = subst id1 = uniqAway in_scope old_id id2 = setIdType id1 (substTy subst (idType old_id)) new_id = zapFragileIdInfo id2 -- Zaps rules, worker-info, unfolding, and fragile OccInfo -- The unfolding and rules will get added back later, by add_info new_in_scope = in_scope `extendInScopeSet` new_id no_change = new_id == old_id -- Extend the substitution if the unique has changed, -- See the notes with substTyVarBndr for the delSubstEnv new_id_subst | no_change = delVarEnv id_subst old_id | otherwise = extendVarEnv id_subst old_id (Var new_id) new_subst = Subst new_in_scope new_id_subst tv_subst cv_subst new_inl = delVarEnv inl old_id ---------------------- add_info :: SimpleOptEnv -> InVar -> OutVar -> OutVar add_info env old_bndr new_bndr | isTyVar old_bndr = new_bndr | otherwise = maybeModifyIdInfo mb_new_info new_bndr where subst = soe_subst env mb_new_info = substIdInfo subst new_bndr (idInfo old_bndr) simpleUnfoldingFun :: IdUnfoldingFun simpleUnfoldingFun id | isAlwaysActive (idInlineActivation id) = idUnfolding id | otherwise = noUnfolding wrapLet :: Maybe (Id,CoreExpr) -> CoreExpr -> CoreExpr wrapLet Nothing body = body wrapLet (Just (b,r)) body = Let (NonRec b r) body ------------------ substVects :: Subst -> [CoreVect] -> [CoreVect] substVects subst = map (substVect subst) ------------------ substVect :: Subst -> CoreVect -> CoreVect substVect subst (Vect v rhs) = Vect v (simpleOptExprWith subst rhs) substVect _subst vd@(NoVect _) = vd substVect _subst vd@(VectType _ _ _) = vd substVect _subst vd@(VectClass _) = vd substVect _subst vd@(VectInst _) = vd {- Note [Inline prag in simplOpt] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ If there's an INLINE/NOINLINE pragma that restricts the phase in which the binder can be inlined, we don't inline here; after all, we don't know what phase we're in. Here's an example foo :: Int -> Int -> Int {-# INLINE foo #-} foo m n = inner m where {-# INLINE [1] inner #-} inner m = m+n bar :: Int -> Int bar n = foo n 1 When inlining 'foo' in 'bar' we want the let-binding for 'inner' to remain visible until Phase 1 Note [Unfold compulsory unfoldings in LHSs] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When the user writes `RULES map coerce = coerce` as a rule, the rule will only ever match if simpleOptExpr replaces coerce by its unfolding on the LHS, because that is the core that the rule matching engine will find. So do that for everything that has a compulsory unfolding. Also see Note [Desugaring coerce as cast] in Desugar. However, we don't want to inline 'seq', which happens to also have a compulsory unfolding, so we only do this unfolding only for things that are always-active. See Note [User-defined RULES for seq] in MkId. Note [Getting the map/coerce RULE to work] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We wish to allow the "map/coerce" RULE to fire: {-# RULES "map/coerce" map coerce = coerce #-} The naive core produced for this is forall a b (dict :: Coercible * a b). map @a @b (coerce @a @b @dict) = coerce @[a] @[b] @dict' where dict' :: Coercible [a] [b] dict' = ... This matches literal uses of `map coerce` in code, but that's not what we want. We want it to match, say, `map MkAge` (where newtype Age = MkAge Int) too. Some of this is addressed by compulsorily unfolding coerce on the LHS, yielding forall a b (dict :: Coercible * a b). map @a @b (\(x :: a) -> case dict of MkCoercible (co :: a ~R# b) -> x |> co) = ... Getting better. But this isn't exactly what gets produced. This is because Coercible essentially has ~R# as a superclass, and superclasses get eagerly extracted during solving. So we get this: forall a b (dict :: Coercible * a b). case Coercible_SCSel @* @a @b dict of _ [Dead] -> map @a @b (\(x :: a) -> case dict of MkCoercible (co :: a ~R# b) -> x |> co) = ... Unfortunately, this still abstracts over a Coercible dictionary. We really want it to abstract over the ~R# evidence. So, we have Desugar.unfold_coerce, which transforms the above to (see also Note [Desugaring coerce as cast] in Desugar) forall a b (co :: a ~R# b). let dict = MkCoercible @* @a @b co in case Coercible_SCSel @* @a @b dict of _ [Dead] -> map @a @b (\(x :: a) -> case dict of MkCoercible (co :: a ~R# b) -> x |> co) = let dict = ... in ... Now, we need simpleOptExpr to fix this up. It does so by taking three separate actions: 1. Inline certain non-recursive bindings. The choice whether to inline is made in simple_bind_pair. Note the rather specific check for MkCoercible in there. 2. Stripping case expressions like the Coercible_SCSel one. See the `Case` case of simple_opt_expr's `go` function. 3. Look for case expressions that unpack something that was just packed and inline them. This is also done in simple_opt_expr's `go` function. This is all a fair amount of special-purpose hackery, but it's for a good cause. And it won't hurt other RULES and such that it comes across. ************************************************************************ * * Join points * * ************************************************************************ -} -- | Returns Just (bndr,rhs) if the binding is a join point: -- If it's a JoinId, just return it -- If it's not yet a JoinId but is always tail-called, -- make it into a JoinId and return it. -- In the latter case, eta-expand the RHS if necessary, to make the -- lambdas explicit, as is required for join points -- -- Precondition: the InBndr has been occurrence-analysed, -- so its OccInfo is valid joinPointBinding_maybe :: InBndr -> InExpr -> Maybe (InBndr, InExpr) joinPointBinding_maybe bndr rhs | not (isId bndr) = Nothing | isJoinId bndr = Just (bndr, rhs) | AlwaysTailCalled join_arity <- tailCallInfo (idOccInfo bndr) , not (bad_unfolding join_arity (idUnfolding bndr)) , (bndrs, body) <- etaExpandToJoinPoint join_arity rhs = Just (bndr `asJoinId` join_arity, mkLams bndrs body) | otherwise = Nothing where -- bad_unfolding returns True if we should /not/ convert a non-join-id -- into a join-id, even though it is AlwaysTailCalled -- See Note [Join points and INLINE pragmas] bad_unfolding join_arity (CoreUnfolding { uf_src = src, uf_tmpl = rhs }) = isStableSource src && join_arity > joinRhsArity rhs bad_unfolding _ (DFunUnfolding {}) = True bad_unfolding _ _ = False joinPointBindings_maybe :: [(InBndr, InExpr)] -> Maybe [(InBndr, InExpr)] joinPointBindings_maybe bndrs = mapM (uncurry joinPointBinding_maybe) bndrs {- Note [Join points and INLINE pragmas] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider f x = let g = \x. not -- Arity 1 {-# INLINE g #-} in case x of A -> g True True B -> g True False C -> blah2 Here 'g' is always tail-called applied to 2 args, but the stable unfolding captured by the INLINE pragma has arity 1. If we try to convert g to be a join point, its unfolding will still have arity 1 (since it is stable, and we don't meddle with stable unfoldings), and Lint will complain (see Note [Invariants on join points], (2a), in CoreSyn. Trac #13413. Moreover, since g is going to be inlined anyway, there is no benefit from making it a join point. If it is recursive, and uselessly marked INLINE, this will stop us making it a join point, which is a annoying. But occasionally (notably in class methods; see Note [Instances and loop breakers] in TcInstDcls) we mark recurive things as INLINE but the recursion unravels; so ignoring INLINE pragmas on recursive things isn't good either. ************************************************************************ * * exprIsConApp_maybe * * ************************************************************************ Note [exprIsConApp_maybe] ~~~~~~~~~~~~~~~~~~~~~~~~~ exprIsConApp_maybe is a very important function. There are two principal uses: * case e of { .... } * cls_op e, where cls_op is a class operation In both cases you want to know if e is of form (C e1..en) where C is a data constructor. However e might not *look* as if Note [exprIsConApp_maybe on literal strings] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ See #9400 and #13317. Conceptually, a string literal "abc" is just ('a':'b':'c':[]), but in Core they are represented as unpackCString# "abc"# by MkCore.mkStringExprFS, or unpackCStringUtf8# when the literal contains multi-byte UTF8 characters. For optimizations we want to be able to treat it as a list, so they can be decomposed when used in a case-statement. exprIsConApp_maybe detects those calls to unpackCString# and returns: Just (':', [Char], ['a', unpackCString# "bc"]). We need to be careful about UTF8 strings here. ""# contains a ByteString, so we must parse it back into a FastString to split off the first character. That way we can treat unpackCString# and unpackCStringUtf8# in the same way. We must also be caeful about lvl = "foo"# ...(unpackCString# lvl)... to ensure that we see through the let-binding for 'lvl'. Hence the (exprIsLiteral_maybe .. arg) in the guard before the call to dealWithStringLiteral. Note [Push coercions in exprIsConApp_maybe] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In Trac #13025 I found a case where we had op (df @t1 @t2) -- op is a ClassOp where df = (/\a b. K e1 e2) |> g To get this to come out we need to simplify on the fly ((/\a b. K e1 e2) |> g) @t1 @t2 Hence the use of pushCoArgs. -} data ConCont = CC [CoreExpr] Coercion -- Substitution already applied -- | Returns @Just (dc, [t1..tk], [x1..xn])@ if the argument expression is -- a *saturated* constructor application of the form @dc t1..tk x1 .. xn@, -- where t1..tk are the *universally-qantified* type args of 'dc' exprIsConApp_maybe :: InScopeEnv -> CoreExpr -> Maybe (DataCon, [Type], [CoreExpr]) exprIsConApp_maybe (in_scope, id_unf) expr = go (Left in_scope) expr (CC [] (mkRepReflCo (exprType expr))) where go :: Either InScopeSet Subst -- Left in-scope means "empty substitution" -- Right subst means "apply this substitution to the CoreExpr" -> CoreExpr -> ConCont -> Maybe (DataCon, [Type], [CoreExpr]) go subst (Tick t expr) cont | not (tickishIsCode t) = go subst expr cont go subst (Cast expr co1) (CC args co2) | Just (args', co1') <- pushCoArgs (subst_co subst co1) args -- See Note [Push coercions in exprIsConApp_maybe] = go subst expr (CC args' (co1' `mkTransCo` co2)) go subst (App fun arg) (CC args co) = go subst fun (CC (subst_arg subst arg : args) co) go subst (Lam var body) (CC (arg:args) co) | exprIsTrivial arg -- Don't duplicate stuff! = go (extend subst var arg) body (CC args co) go (Right sub) (Var v) cont = go (Left (substInScope sub)) (lookupIdSubst (text "exprIsConApp" <+> ppr expr) sub v) cont go (Left in_scope) (Var fun) cont@(CC args co) | Just con <- isDataConWorkId_maybe fun , count isValArg args == idArity fun = pushCoDataCon con args co -- Look through dictionary functions; see Note [Unfolding DFuns] | DFunUnfolding { df_bndrs = bndrs, df_con = con, df_args = dfun_args } <- unfolding , bndrs `equalLength` args -- See Note [DFun arity check] , let subst = mkOpenSubst in_scope (bndrs `zip` args) = pushCoDataCon con (map (substExpr (text "exprIsConApp1") subst) dfun_args) co -- Look through unfoldings, but only arity-zero one; -- if arity > 0 we are effectively inlining a function call, -- and that is the business of callSiteInline. -- In practice, without this test, most of the "hits" were -- CPR'd workers getting inlined back into their wrappers, | idArity fun == 0 , Just rhs <- expandUnfolding_maybe unfolding , let in_scope' = extendInScopeSetSet in_scope (exprFreeVars rhs) = go (Left in_scope') rhs cont -- See Note [exprIsConApp_maybe on literal strings] | (fun `hasKey` unpackCStringIdKey) || (fun `hasKey` unpackCStringUtf8IdKey) , [arg] <- args , Just (MachStr str) <- exprIsLiteral_maybe (in_scope, id_unf) arg = dealWithStringLiteral fun str co where unfolding = id_unf fun go _ _ _ = Nothing ---------------------------- -- Operations on the (Either InScopeSet CoreSubst) -- The Left case is wildly dominant subst_co (Left {}) co = co subst_co (Right s) co = CoreSubst.substCo s co subst_arg (Left {}) e = e subst_arg (Right s) e = substExpr (text "exprIsConApp2") s e extend (Left in_scope) v e = Right (extendSubst (mkEmptySubst in_scope) v e) extend (Right s) v e = Right (extendSubst s v e) -- See Note [exprIsConApp_maybe on literal strings] dealWithStringLiteral :: Var -> BS.ByteString -> Coercion -> Maybe (DataCon, [Type], [CoreExpr]) -- This is not possible with user-supplied empty literals, MkCore.mkStringExprFS -- turns those into [] automatically, but just in case something else in GHC -- generates a string literal directly. dealWithStringLiteral _ str co | BS.null str = pushCoDataCon nilDataCon [Type charTy] co dealWithStringLiteral fun str co = let strFS = mkFastStringByteString str char = mkConApp charDataCon [mkCharLit (headFS strFS)] charTail = fastStringToByteString (tailFS strFS) -- In singleton strings, just add [] instead of unpackCstring# ""#. rest = if BS.null charTail then mkConApp nilDataCon [Type charTy] else App (Var fun) (Lit (MachStr charTail)) in pushCoDataCon consDataCon [Type charTy, char, rest] co {- Note [Unfolding DFuns] ~~~~~~~~~~~~~~~~~~~~~~ DFuns look like df :: forall a b. (Eq a, Eq b) -> Eq (a,b) df a b d_a d_b = MkEqD (a,b) ($c1 a b d_a d_b) ($c2 a b d_a d_b) So to split it up we just need to apply the ops $c1, $c2 etc to the very same args as the dfun. It takes a little more work to compute the type arguments to the dictionary constructor. Note [DFun arity check] ~~~~~~~~~~~~~~~~~~~~~~~ Here we check that the total number of supplied arguments (inclding type args) matches what the dfun is expecting. This may be *less* than the ordinary arity of the dfun: see Note [DFun unfoldings] in CoreSyn -} exprIsLiteral_maybe :: InScopeEnv -> CoreExpr -> Maybe Literal -- Same deal as exprIsConApp_maybe, but much simpler -- Nevertheless we do need to look through unfoldings for -- Integer and string literals, which are vigorously hoisted to top level -- and not subsequently inlined exprIsLiteral_maybe env@(_, id_unf) e = case e of Lit l -> Just l Tick _ e' -> exprIsLiteral_maybe env e' -- dubious? Var v | Just rhs <- expandUnfolding_maybe (id_unf v) -> exprIsLiteral_maybe env rhs _ -> Nothing {- Note [exprIsLambda_maybe] ~~~~~~~~~~~~~~~~~~~~~~~~~~ exprIsLambda_maybe will, given an expression `e`, try to turn it into the form `Lam v e'` (returned as `Just (v,e')`). Besides using lambdas, it looks through casts (using the Push rule), and it unfolds function calls if the unfolding has a greater arity than arguments are present. Currently, it is used in Rules.match, and is required to make "map coerce = coerce" match. -} exprIsLambda_maybe :: InScopeEnv -> CoreExpr -> Maybe (Var, CoreExpr,[Tickish Id]) -- See Note [exprIsLambda_maybe] -- The simple case: It is a lambda already exprIsLambda_maybe _ (Lam x e) = Just (x, e, []) -- Still straightforward: Ticks that we can float out of the way exprIsLambda_maybe (in_scope_set, id_unf) (Tick t e) | tickishFloatable t , Just (x, e, ts) <- exprIsLambda_maybe (in_scope_set, id_unf) e = Just (x, e, t:ts) -- Also possible: A casted lambda. Push the coercion inside exprIsLambda_maybe (in_scope_set, id_unf) (Cast casted_e co) | Just (x, e,ts) <- exprIsLambda_maybe (in_scope_set, id_unf) casted_e -- Only do value lambdas. -- this implies that x is not in scope in gamma (makes this code simpler) , not (isTyVar x) && not (isCoVar x) , ASSERT( not $ x `elemVarSet` tyCoVarsOfCo co) True , Just (x',e') <- pushCoercionIntoLambda in_scope_set x e co , let res = Just (x',e',ts) = --pprTrace "exprIsLambda_maybe:Cast" (vcat [ppr casted_e,ppr co,ppr res)]) res -- Another attempt: See if we find a partial unfolding exprIsLambda_maybe (in_scope_set, id_unf) e | (Var f, as, ts) <- collectArgsTicks tickishFloatable e , idArity f > count isValArg as -- Make sure there is hope to get a lambda , Just rhs <- expandUnfolding_maybe (id_unf f) -- Optimize, for beta-reduction , let e' = simpleOptExprWith (mkEmptySubst in_scope_set) (rhs `mkApps` as) -- Recurse, because of possible casts , Just (x', e'', ts') <- exprIsLambda_maybe (in_scope_set, id_unf) e' , let res = Just (x', e'', ts++ts') = -- pprTrace "exprIsLambda_maybe:Unfold" (vcat [ppr e, ppr (x',e'')]) res exprIsLambda_maybe _ _e = -- pprTrace "exprIsLambda_maybe:Fail" (vcat [ppr _e]) Nothing {- ********************************************************************* * * The "push rules" * * ************************************************************************ Here we implement the "push rules" from FC papers: * The push-argument rules, where we can move a coercion past an argument. We have (fun |> co) arg and we want to transform it to (fun arg') |> co' for some suitable co' and tranformed arg'. * The PushK rule for data constructors. We have (K e1 .. en) |> co and we want to tranform to (K e1' .. en') by pushing the coercion into the oarguments -} pushCoArgs :: Coercion -> [CoreArg] -> Maybe ([CoreArg], Coercion) pushCoArgs co [] = return ([], co) pushCoArgs co (arg:args) = do { (arg', co1) <- pushCoArg co arg ; (args', co2) <- pushCoArgs co1 args ; return (arg':args', co2) } pushCoArg :: Coercion -> CoreArg -> Maybe (CoreArg, Coercion) -- We have (fun |> co) arg, and we want to transform it to -- (fun arg) |> co -- This may fail, e.g. if (fun :: N) where N is a newtype -- C.f. simplCast in Simplify.hs -- 'co' is always Representational pushCoArg co (Type ty) = do { (ty', co') <- pushCoTyArg co ty ; return (Type ty', co') } pushCoArg co val_arg = do { (arg_co, co') <- pushCoValArg co ; return (mkCast val_arg arg_co, co') } pushCoTyArg :: Coercion -> Type -> Maybe (Type, Coercion) -- We have (fun |> co) @ty -- Push the coercion through to return -- (fun @ty') |> co' -- 'co' is always Representational pushCoTyArg co ty | tyL `eqType` tyR = Just (ty, mkRepReflCo (piResultTy tyR ty)) | isForAllTy tyL = ASSERT2( isForAllTy tyR, ppr co $$ ppr ty ) Just (ty `mkCastTy` mkSymCo co1, co2) | otherwise = Nothing where Pair tyL tyR = coercionKind co -- co :: tyL ~ tyR -- tyL = forall (a1 :: k1). ty1 -- tyR = forall (a2 :: k2). ty2 co1 = mkNthCo 0 co -- co1 :: k1 ~ k2 -- Note that NthCo can extract an equality between the kinds -- of the types related by a coercion between forall-types. -- See the NthCo case in CoreLint. co2 = mkInstCo co (mkCoherenceLeftCo (mkNomReflCo ty) co1) -- co2 :: ty1[ (ty|>co1)/a1 ] ~ ty2[ ty/a2 ] -- Arg of mkInstCo is always nominal, hence mkNomReflCo pushCoValArg :: Coercion -> Maybe (Coercion, Coercion) -- We have (fun |> co) arg -- Push the coercion through to return -- (fun (arg |> co_arg)) |> co_res -- 'co' is always Representational pushCoValArg co | tyL `eqType` tyR = Just (mkRepReflCo arg, mkRepReflCo res) | isFunTy tyL , (co1, co2) <- decomposeFunCo co -- If co :: (tyL1 -> tyL2) ~ (tyR1 -> tyR2) -- then co1 :: tyL1 ~ tyR1 -- co2 :: tyL2 ~ tyR2 = ASSERT2( isFunTy tyR, ppr co $$ ppr arg ) Just (mkSymCo co1, co2) | otherwise = Nothing where (arg, res) = splitFunTy tyR Pair tyL tyR = coercionKind co pushCoercionIntoLambda :: InScopeSet -> Var -> CoreExpr -> Coercion -> Maybe (Var, CoreExpr) -- This implements the Push rule from the paper on coercions -- (\x. e) |> co -- ===> -- (\x'. e |> co') pushCoercionIntoLambda in_scope x e co | ASSERT(not (isTyVar x) && not (isCoVar x)) True , Pair s1s2 t1t2 <- coercionKind co , Just (_s1,_s2) <- splitFunTy_maybe s1s2 , Just (t1,_t2) <- splitFunTy_maybe t1t2 = let (co1, co2) = decomposeFunCo co -- Should we optimize the coercions here? -- Otherwise they might not match too well x' = x `setIdType` t1 in_scope' = in_scope `extendInScopeSet` x' subst = extendIdSubst (mkEmptySubst in_scope') x (mkCast (Var x') co1) in Just (x', substExpr (text "pushCoercionIntoLambda") subst e `mkCast` co2) | otherwise = pprTrace "exprIsLambda_maybe: Unexpected lambda in case" (ppr (Lam x e)) Nothing pushCoDataCon :: DataCon -> [CoreExpr] -> Coercion -> Maybe (DataCon , [Type] -- Universal type args , [CoreExpr]) -- All other args incl existentials -- Implement the KPush reduction rule as described in "Down with kinds" -- The transformation applies iff we have -- (C e1 ... en) `cast` co -- where co :: (T t1 .. tn) ~ to_ty -- The left-hand one must be a T, because exprIsConApp returned True -- but the right-hand one might not be. (Though it usually will.) pushCoDataCon dc dc_args co | isReflCo co || from_ty `eqType` to_ty -- try cheap test first , let (univ_ty_args, rest_args) = splitAtList (dataConUnivTyVars dc) dc_args = Just (dc, map exprToType univ_ty_args, rest_args) | Just (to_tc, to_tc_arg_tys) <- splitTyConApp_maybe to_ty , to_tc == dataConTyCon dc -- These two tests can fail; we might see -- (C x y) `cast` (g :: T a ~ S [a]), -- where S is a type function. In fact, exprIsConApp -- will probably not be called in such circumstances, -- but there't nothing wrong with it = let tc_arity = tyConArity to_tc dc_univ_tyvars = dataConUnivTyVars dc dc_ex_tyvars = dataConExTyVars dc arg_tys = dataConRepArgTys dc non_univ_args = dropList dc_univ_tyvars dc_args (ex_args, val_args) = splitAtList dc_ex_tyvars non_univ_args -- Make the "Psi" from the paper omegas = decomposeCo tc_arity co (psi_subst, to_ex_arg_tys) = liftCoSubstWithEx Representational dc_univ_tyvars omegas dc_ex_tyvars (map exprToType ex_args) -- Cast the value arguments (which include dictionaries) new_val_args = zipWith cast_arg arg_tys val_args cast_arg arg_ty arg = mkCast arg (psi_subst arg_ty) to_ex_args = map Type to_ex_arg_tys dump_doc = vcat [ppr dc, ppr dc_univ_tyvars, ppr dc_ex_tyvars, ppr arg_tys, ppr dc_args, ppr ex_args, ppr val_args, ppr co, ppr from_ty, ppr to_ty, ppr to_tc ] in ASSERT2( eqType from_ty (mkTyConApp to_tc (map exprToType $ takeList dc_univ_tyvars dc_args)), dump_doc ) ASSERT2( equalLength val_args arg_tys, dump_doc ) Just (dc, to_tc_arg_tys, to_ex_args ++ new_val_args) | otherwise = Nothing where Pair from_ty to_ty = coercionKind co collectBindersPushingCo :: CoreExpr -> ([Var], CoreExpr) -- Collect lambda binders, pushing coercions inside if possible -- E.g. (\x.e) |> g g ::