-- (c) The University of Glasgow, 2006 {-# LANGUAGE LambdaCase #-} -- | Unit manipulation module GHC.Unit.State ( module GHC.Unit.Info, -- * Reading the package config, and processing cmdline args UnitState(..), PreloadUnitClosure, UnitDatabase (..), UnitErr (..), emptyUnitState, initUnits, readUnitDatabases, readUnitDatabase, getUnitDbRefs, resolveUnitDatabase, listUnitInfo, -- * Querying the package config UnitInfoMap, lookupUnit, lookupUnit', unsafeLookupUnit, lookupUnitId, lookupUnitId', unsafeLookupUnitId, lookupPackageName, resolvePackageImport, improveUnit, searchPackageId, listVisibleModuleNames, lookupModuleInAllUnits, lookupModuleWithSuggestions, lookupModulePackage, lookupPluginModuleWithSuggestions, requirementMerges, LookupResult(..), ModuleSuggestion(..), ModuleOrigin(..), UnusableUnit(..), UnusableUnitReason(..), pprReason, closeUnitDeps, closeUnitDeps', mayThrowUnitErr, -- * Module hole substitution ShHoleSubst, renameHoleUnit, renameHoleModule, renameHoleUnit', renameHoleModule', instUnitToUnit, instModuleToModule, -- * Pretty-printing pprFlag, pprUnits, pprUnitsSimple, pprUnitIdForUser, pprUnitInfoForUser, pprModuleMap, pprWithUnitState, -- * Utils unwireUnit, implicitPackageDeps) where import GHC.Prelude import GHC.Driver.DynFlags import GHC.Platform import GHC.Platform.Ways import GHC.Unit.Database import GHC.Unit.Info import GHC.Unit.Ppr import GHC.Unit.Types import GHC.Unit.Module import GHC.Unit.Home import GHC.Types.Unique.FM import GHC.Types.Unique.DFM import GHC.Types.Unique.Set import GHC.Types.Unique.DSet import GHC.Types.Unique.Map import GHC.Types.Unique import GHC.Types.PkgQual import GHC.Utils.Misc import GHC.Utils.Panic import GHC.Utils.Outputable as Outputable import GHC.Data.Maybe import System.Environment ( getEnv ) import GHC.Data.FastString import qualified GHC.Data.ShortText as ST import GHC.Utils.Logger import GHC.Utils.Error import GHC.Utils.Exception import System.Directory import System.FilePath as FilePath import Control.Monad import Data.Graph (stronglyConnComp, SCC(..)) import Data.Char ( toUpper ) import Data.List ( intersperse, partition, sortBy, isSuffixOf, sortOn ) import Data.Set (Set) import Data.Monoid (First(..)) import qualified Data.Semigroup as Semigroup import qualified Data.Set as Set import GHC.LanguageExtensions import Control.Applicative -- --------------------------------------------------------------------------- -- The Unit state -- The unit state is computed by 'initUnits', and kept in HscEnv. -- It is influenced by various command-line flags: -- -- * @-package \@ and @-package-id \@ cause @\@ to become exposed. -- If @-hide-all-packages@ was not specified, these commands also cause -- all other packages with the same name to become hidden. -- -- * @-hide-package \@ causes @\@ to become hidden. -- -- * (there are a few more flags, check below for their semantics) -- -- The unit state has the following properties. -- -- * Let @exposedUnits@ be the set of packages thus exposed. -- Let @depExposedUnits@ be the transitive closure from @exposedUnits@ of -- their dependencies. -- -- * When searching for a module from a preload import declaration, -- only the exposed modules in @exposedUnits@ are valid. -- -- * When searching for a module from an implicit import, all modules -- from @depExposedUnits@ are valid. -- -- * When linking in a compilation manager mode, we link in packages the -- program depends on (the compiler knows this list by the -- time it gets to the link step). Also, we link in all packages -- which were mentioned with preload @-package@ flags on the command-line, -- or are a transitive dependency of same, or are \"base\"\/\"rts\". -- The reason for this is that we might need packages which don't -- contain any Haskell modules, and therefore won't be discovered -- by the normal mechanism of dependency tracking. -- Notes on DLLs -- ~~~~~~~~~~~~~ -- When compiling module A, which imports module B, we need to -- know whether B will be in the same DLL as A. -- If it's in the same DLL, we refer to B_f_closure -- If it isn't, we refer to _imp__B_f_closure -- When compiling A, we record in B's Module value whether it's -- in a different DLL, by setting the DLL flag. -- | Given a module name, there may be multiple ways it came into scope, -- possibly simultaneously. This data type tracks all the possible ways -- it could have come into scope. Warning: don't use the record functions, -- they're partial! data ModuleOrigin = -- | Module is hidden, and thus never will be available for import. -- (But maybe the user didn't realize), so we'll still keep track -- of these modules.) ModHidden -- | Module is unavailable because the unit is unusable. | ModUnusable !UnusableUnit -- | Module is public, and could have come from some places. | ModOrigin { -- | @Just False@ means that this module is in -- someone's @exported-modules@ list, but that package is hidden; -- @Just True@ means that it is available; @Nothing@ means neither -- applies. fromOrigUnit :: Maybe Bool -- | Is the module available from a reexport of an exposed package? -- There could be multiple. , fromExposedReexport :: [UnitInfo] -- | Is the module available from a reexport of a hidden package? , fromHiddenReexport :: [UnitInfo] -- | Did the module export come from a package flag? (ToDo: track -- more information. , fromPackageFlag :: Bool } -- | A unusable unit module origin data UnusableUnit = UnusableUnit { uuUnit :: !Unit -- ^ Unusable unit , uuReason :: !UnusableUnitReason -- ^ Reason , uuIsReexport :: !Bool -- ^ Is the "module" a reexport? } instance Outputable ModuleOrigin where ppr ModHidden = text "hidden module" ppr (ModUnusable _) = text "unusable module" ppr (ModOrigin e res rhs f) = sep (punctuate comma ( (case e of Nothing -> [] Just False -> [text "hidden package"] Just True -> [text "exposed package"]) ++ (if null res then [] else [text "reexport by" <+> sep (map (ppr . mkUnit) res)]) ++ (if null rhs then [] else [text "hidden reexport by" <+> sep (map (ppr . mkUnit) res)]) ++ (if f then [text "package flag"] else []) )) -- | Smart constructor for a module which is in @exposed-modules@. Takes -- as an argument whether or not the defining package is exposed. fromExposedModules :: Bool -> ModuleOrigin fromExposedModules e = ModOrigin (Just e) [] [] False -- | Smart constructor for a module which is in @reexported-modules@. Takes -- as an argument whether or not the reexporting package is exposed, and -- also its 'UnitInfo'. fromReexportedModules :: Bool -> UnitInfo -> ModuleOrigin fromReexportedModules True pkg = ModOrigin Nothing [pkg] [] False fromReexportedModules False pkg = ModOrigin Nothing [] [pkg] False -- | Smart constructor for a module which was bound by a package flag. fromFlag :: ModuleOrigin fromFlag = ModOrigin Nothing [] [] True instance Semigroup ModuleOrigin where x@(ModOrigin e res rhs f) <> y@(ModOrigin e' res' rhs' f') = ModOrigin (g e e') (res ++ res') (rhs ++ rhs') (f || f') where g (Just b) (Just b') | b == b' = Just b | otherwise = pprPanic "ModOrigin: package both exposed/hidden" $ text "x: " <> ppr x $$ text "y: " <> ppr y g Nothing x = x g x Nothing = x x <> y = pprPanic "ModOrigin: module origin mismatch" $ text "x: " <> ppr x $$ text "y: " <> ppr y instance Monoid ModuleOrigin where mempty = ModOrigin Nothing [] [] False mappend = (Semigroup.<>) -- | Is the name from the import actually visible? (i.e. does it cause -- ambiguity, or is it only relevant when we're making suggestions?) originVisible :: ModuleOrigin -> Bool originVisible ModHidden = False originVisible (ModUnusable _) = False originVisible (ModOrigin b res _ f) = b == Just True || not (null res) || f -- | Are there actually no providers for this module? This will never occur -- except when we're filtering based on package imports. originEmpty :: ModuleOrigin -> Bool originEmpty (ModOrigin Nothing [] [] False) = True originEmpty _ = False type PreloadUnitClosure = UniqSet UnitId -- | 'UniqFM' map from 'Unit' to a 'UnitVisibility'. type VisibilityMap = UniqMap Unit UnitVisibility -- | 'UnitVisibility' records the various aspects of visibility of a particular -- 'Unit'. data UnitVisibility = UnitVisibility { uv_expose_all :: Bool -- ^ Should all modules in exposed-modules should be dumped into scope? , uv_renamings :: [(ModuleName, ModuleName)] -- ^ Any custom renamings that should bring extra 'ModuleName's into -- scope. , uv_package_name :: First FastString -- ^ The package name associated with the 'Unit'. This is used -- to implement legacy behavior where @-package foo-0.1@ implicitly -- hides any packages named @foo@ , uv_requirements :: UniqMap ModuleName (Set InstantiatedModule) -- ^ The signatures which are contributed to the requirements context -- from this unit ID. , uv_explicit :: Maybe PackageArg -- ^ Whether or not this unit was explicitly brought into scope, -- as opposed to implicitly via the 'exposed' fields in the -- package database (when @-hide-all-packages@ is not passed.) } instance Outputable UnitVisibility where ppr (UnitVisibility { uv_expose_all = b, uv_renamings = rns, uv_package_name = First mb_pn, uv_requirements = reqs, uv_explicit = explicit }) = ppr (b, rns, mb_pn, reqs, explicit) instance Semigroup UnitVisibility where uv1 <> uv2 = UnitVisibility { uv_expose_all = uv_expose_all uv1 || uv_expose_all uv2 , uv_renamings = uv_renamings uv1 ++ uv_renamings uv2 , uv_package_name = mappend (uv_package_name uv1) (uv_package_name uv2) , uv_requirements = plusUniqMap_C Set.union (uv_requirements uv2) (uv_requirements uv1) , uv_explicit = uv_explicit uv1 <|> uv_explicit uv2 } instance Monoid UnitVisibility where mempty = UnitVisibility { uv_expose_all = False , uv_renamings = [] , uv_package_name = First Nothing , uv_requirements = emptyUniqMap , uv_explicit = Nothing } mappend = (Semigroup.<>) -- | Unit configuration data UnitConfig = UnitConfig { unitConfigPlatformArchOS :: !ArchOS -- ^ Platform arch and OS , unitConfigWays :: !Ways -- ^ Ways to use , unitConfigAllowVirtual :: !Bool -- ^ Allow virtual units -- ^ Do we allow the use of virtual units instantiated on-the-fly (see -- Note [About units] in GHC.Unit). This should only be true when we are -- type-checking an indefinite unit (not producing any code). , unitConfigProgramName :: !String -- ^ Name of the compiler (e.g. "GHC", "GHCJS"). Used to fetch environment -- variables such as "GHC[JS]_PACKAGE_PATH". , unitConfigGlobalDB :: !FilePath -- ^ Path to global DB , unitConfigGHCDir :: !FilePath -- ^ Main GHC dir: contains settings, etc. , unitConfigDBName :: !String -- ^ User DB name (e.g. "package.conf.d") , unitConfigAutoLink :: ![UnitId] -- ^ Units to link automatically (e.g. base, rts) , unitConfigDistrustAll :: !Bool -- ^ Distrust all units by default , unitConfigHideAll :: !Bool -- ^ Hide all units by default , unitConfigHideAllPlugins :: !Bool -- ^ Hide all plugins units by default , unitConfigDBCache :: Maybe [UnitDatabase UnitId] -- ^ Cache of databases to use, in the order they were specified on the -- command line (later databases shadow earlier ones). -- If Nothing, databases will be found using `unitConfigFlagsDB`. -- command-line flags , unitConfigFlagsDB :: [PackageDBFlag] -- ^ Unit databases flags , unitConfigFlagsExposed :: [PackageFlag] -- ^ Exposed units , unitConfigFlagsIgnored :: [IgnorePackageFlag] -- ^ Ignored units , unitConfigFlagsTrusted :: [TrustFlag] -- ^ Trusted units , unitConfigFlagsPlugins :: [PackageFlag] -- ^ Plugins exposed units , unitConfigHomeUnits :: Set.Set UnitId } initUnitConfig :: DynFlags -> Maybe [UnitDatabase UnitId] -> Set.Set UnitId -> UnitConfig initUnitConfig dflags cached_dbs home_units = let !hu_id = homeUnitId_ dflags !hu_instanceof = homeUnitInstanceOf_ dflags !hu_instantiations = homeUnitInstantiations_ dflags autoLink | not (gopt Opt_AutoLinkPackages dflags) = [] -- By default we add base & rts to the preload units (when they are -- found in the unit database) except when we are building them | otherwise = filter (hu_id /=) [baseUnitId, rtsUnitId] -- if the home unit is indefinite, it means we are type-checking it only -- (not producing any code). Hence we can use virtual units instantiated -- on-the-fly. See Note [About units] in GHC.Unit allow_virtual_units = case (hu_instanceof, hu_instantiations) of (Just u, is) -> u == hu_id && any (isHoleModule . snd) is _ -> False in UnitConfig { unitConfigPlatformArchOS = platformArchOS (targetPlatform dflags) , unitConfigProgramName = programName dflags , unitConfigWays = ways dflags , unitConfigAllowVirtual = allow_virtual_units , unitConfigGlobalDB = globalPackageDatabasePath dflags , unitConfigGHCDir = topDir dflags , unitConfigDBName = "package.conf.d" , unitConfigAutoLink = autoLink , unitConfigDistrustAll = gopt Opt_DistrustAllPackages dflags , unitConfigHideAll = gopt Opt_HideAllPackages dflags , unitConfigHideAllPlugins = gopt Opt_HideAllPluginPackages dflags , unitConfigDBCache = cached_dbs , unitConfigFlagsDB = map (offsetPackageDb (workingDirectory dflags)) $ packageDBFlags dflags , unitConfigFlagsExposed = packageFlags dflags , unitConfigFlagsIgnored = ignorePackageFlags dflags , unitConfigFlagsTrusted = trustFlags dflags , unitConfigFlagsPlugins = pluginPackageFlags dflags , unitConfigHomeUnits = home_units } where offsetPackageDb :: Maybe FilePath -> PackageDBFlag -> PackageDBFlag offsetPackageDb (Just offset) (PackageDB (PkgDbPath p)) | isRelative p = PackageDB (PkgDbPath (offset p)) offsetPackageDb _ p = p -- | Map from 'ModuleName' to a set of module providers (i.e. a 'Module' and -- its 'ModuleOrigin'). -- -- NB: the set is in fact a 'Map Module ModuleOrigin', probably to keep only one -- origin for a given 'Module' type ModuleNameProvidersMap = UniqMap ModuleName (UniqMap Module ModuleOrigin) data UnitState = UnitState { -- | A mapping of 'Unit' to 'UnitInfo'. This list is adjusted -- so that only valid units are here. 'UnitInfo' reflects -- what was stored *on disk*, except for the 'trusted' flag, which -- is adjusted at runtime. (In particular, some units in this map -- may have the 'exposed' flag be 'False'.) unitInfoMap :: UnitInfoMap, -- | The set of transitively reachable units according -- to the explicitly provided command line arguments. -- A fully instantiated VirtUnit may only be replaced by a RealUnit from -- this set. -- See Note [VirtUnit to RealUnit improvement] preloadClosure :: PreloadUnitClosure, -- | A mapping of 'PackageName' to 'UnitId'. If several units have the same -- package name (e.g. different instantiations), then we return one of them... -- This is used when users refer to packages in Backpack includes. -- And also to resolve package qualifiers with the PackageImports extension. packageNameMap :: UniqFM PackageName UnitId, -- | A mapping from database unit keys to wired in unit ids. wireMap :: UniqMap UnitId UnitId, -- | A mapping from wired in unit ids to unit keys from the database. unwireMap :: UniqMap UnitId UnitId, -- | The units we're going to link in eagerly. This list -- should be in reverse dependency order; that is, a unit -- is always mentioned before the units it depends on. preloadUnits :: [UnitId], -- | Units which we explicitly depend on (from a command line flag). -- We'll use this to generate version macros and the unused packages warning. The -- original flag which was used to bring the unit into scope is recorded for the -- -Wunused-packages warning. explicitUnits :: [(Unit, Maybe PackageArg)], homeUnitDepends :: [UnitId], -- | This is a full map from 'ModuleName' to all modules which may possibly -- be providing it. These providers may be hidden (but we'll still want -- to report them in error messages), or it may be an ambiguous import. moduleNameProvidersMap :: !ModuleNameProvidersMap, -- | A map, like 'moduleNameProvidersMap', but controlling plugin visibility. pluginModuleNameProvidersMap :: !ModuleNameProvidersMap, -- | A map saying, for each requirement, what interfaces must be merged -- together when we use them. For example, if our dependencies -- are @p[A=\]@ and @q[A=\,B=r[C=\]:B]@, then the interfaces -- to merge for A are @p[A=\]:A@, @q[A=\,B=r[C=\]:B]:A@ -- and @r[C=\]:C@. -- -- There's an entry in this map for each hole in our home library. requirementContext :: UniqMap ModuleName [InstantiatedModule], -- | Indicate if we can instantiate units on-the-fly. -- -- This should only be true when we are type-checking an indefinite unit. -- See Note [About units] in GHC.Unit. allowVirtualUnits :: !Bool } emptyUnitState :: UnitState emptyUnitState = UnitState { unitInfoMap = emptyUniqMap, preloadClosure = emptyUniqSet, packageNameMap = emptyUFM, wireMap = emptyUniqMap, unwireMap = emptyUniqMap, preloadUnits = [], explicitUnits = [], homeUnitDepends = [], moduleNameProvidersMap = emptyUniqMap, pluginModuleNameProvidersMap = emptyUniqMap, requirementContext = emptyUniqMap, allowVirtualUnits = False } -- | Unit database data UnitDatabase unit = UnitDatabase { unitDatabasePath :: FilePath , unitDatabaseUnits :: [GenUnitInfo unit] } instance Outputable u => Outputable (UnitDatabase u) where ppr (UnitDatabase fp _u) = text "DB:" <+> text fp type UnitInfoMap = UniqMap UnitId UnitInfo -- | Find the unit we know about with the given unit, if any lookupUnit :: UnitState -> Unit -> Maybe UnitInfo lookupUnit pkgs = lookupUnit' (allowVirtualUnits pkgs) (unitInfoMap pkgs) (preloadClosure pkgs) -- | A more specialized interface, which doesn't require a 'UnitState' (so it -- can be used while we're initializing 'DynFlags') -- -- Parameters: -- * a boolean specifying whether or not to look for on-the-fly renamed interfaces -- * a 'UnitInfoMap' -- * a 'PreloadUnitClosure' lookupUnit' :: Bool -> UnitInfoMap -> PreloadUnitClosure -> Unit -> Maybe UnitInfo lookupUnit' allowOnTheFlyInst pkg_map closure u = case u of HoleUnit -> error "Hole unit" RealUnit i -> lookupUniqMap pkg_map (unDefinite i) VirtUnit i | allowOnTheFlyInst -> -- lookup UnitInfo of the indefinite unit to be instantiated and -- instantiate it on-the-fly fmap (renameUnitInfo pkg_map closure (instUnitInsts i)) (lookupUniqMap pkg_map (instUnitInstanceOf i)) | otherwise -> -- lookup UnitInfo by virtual UnitId. This is used to find indefinite -- units. Even if they are real, installed units, they can't use the -- `RealUnit` constructor (it is reserved for definite units) so we use -- the `VirtUnit` constructor. lookupUniqMap pkg_map (virtualUnitId i) -- | Find the unit we know about with the given unit id, if any lookupUnitId :: UnitState -> UnitId -> Maybe UnitInfo lookupUnitId state uid = lookupUnitId' (unitInfoMap state) uid -- | Find the unit we know about with the given unit id, if any lookupUnitId' :: UnitInfoMap -> UnitId -> Maybe UnitInfo lookupUnitId' db uid = lookupUniqMap db uid -- | Looks up the given unit in the unit state, panicking if it is not found unsafeLookupUnit :: HasDebugCallStack => UnitState -> Unit -> UnitInfo unsafeLookupUnit state u = case lookupUnit state u of Just info -> info Nothing -> pprPanic "unsafeLookupUnit" (ppr u) -- | Looks up the given unit id in the unit state, panicking if it is not found unsafeLookupUnitId :: HasDebugCallStack => UnitState -> UnitId -> UnitInfo unsafeLookupUnitId state uid = case lookupUnitId state uid of Just info -> info Nothing -> pprPanic "unsafeLookupUnitId" (ppr uid) -- | Find the unit we know about with the given package name (e.g. @foo@), if any -- (NB: there might be a locally defined unit name which overrides this) -- This function is unsafe to use in general because it doesn't respect package -- visibility. lookupPackageName :: UnitState -> PackageName -> Maybe UnitId lookupPackageName pkgstate n = lookupUFM (packageNameMap pkgstate) n -- | Search for units with a given package ID (e.g. \"foo-0.1\") searchPackageId :: UnitState -> PackageId -> [UnitInfo] searchPackageId pkgstate pid = filter ((pid ==) . unitPackageId) (listUnitInfo pkgstate) -- | Find the UnitId which an import qualified by a package import comes from. -- Compared to 'lookupPackageName', this function correctly accounts for visibility, -- renaming and thinning. resolvePackageImport :: UnitState -> ModuleName -> PackageName -> Maybe UnitId resolvePackageImport unit_st mn pn = do -- 1. Find all modules providing the ModuleName (this accounts for visibility/thinning etc) providers <- filterUniqMap originVisible <$> lookupUniqMap (moduleNameProvidersMap unit_st) mn -- 2. Get the UnitIds of the candidates let candidates_uid = concatMap to_uid $ sortOn fst $ nonDetUniqMapToList providers -- 3. Get the package names of the candidates let candidates_units = map (\ui -> ((unitPackageName ui), unitId ui)) $ mapMaybe (\uid -> lookupUniqMap (unitInfoMap unit_st) uid) candidates_uid -- 4. Check to see if the PackageName helps us disambiguate any candidates. lookup pn candidates_units where -- Get the UnitId from which a visible identifier is from to_uid :: (Module, ModuleOrigin) -> [UnitId] to_uid (mod, ModOrigin mo re_exps _ _) = case mo of -- Available directly, but also potentially from re-exports Just True -> (toUnitId (moduleUnit mod)) : map unitId re_exps -- Just available from these re-exports _ -> map unitId re_exps to_uid _ = [] -- | Create a Map UnitId UnitInfo -- -- For each instantiated unit, we add two map keys: -- * the real unit id -- * the virtual unit id made from its instantiation -- -- We do the same thing for fully indefinite units (which are "instantiated" -- with module holes). -- mkUnitInfoMap :: [UnitInfo] -> UnitInfoMap mkUnitInfoMap infos = foldl' add emptyUniqMap infos where mkVirt p = virtualUnitId (mkInstantiatedUnit (unitInstanceOf p) (unitInstantiations p)) add pkg_map p | not (null (unitInstantiations p)) = addToUniqMap (addToUniqMap pkg_map (mkVirt p) p) (unitId p) p | otherwise = addToUniqMap pkg_map (unitId p) p -- | Get a list of entries from the unit database. NB: be careful with -- this function, although all units in this map are "visible", this -- does not imply that the exposed-modules of the unit are available -- (they may have been thinned or renamed). listUnitInfo :: UnitState -> [UnitInfo] listUnitInfo state = nonDetEltsUniqMap (unitInfoMap state) -- ---------------------------------------------------------------------------- -- Loading the unit db files and building up the unit state -- | Read the unit database files, and sets up various internal tables of -- unit information, according to the unit-related flags on the -- command-line (@-package@, @-hide-package@ etc.) -- -- 'initUnits' can be called again subsequently after updating the -- 'packageFlags' field of the 'DynFlags', and it will update the -- 'unitState' in 'DynFlags'. initUnits :: Logger -> DynFlags -> Maybe [UnitDatabase UnitId] -> Set.Set UnitId -> IO ([UnitDatabase UnitId], UnitState, HomeUnit, Maybe PlatformConstants) initUnits logger dflags cached_dbs home_units = do let forceUnitInfoMap (state, _) = unitInfoMap state `seq` () (unit_state,dbs) <- withTiming logger (text "initializing unit database") forceUnitInfoMap $ mkUnitState logger (initUnitConfig dflags cached_dbs home_units) putDumpFileMaybe logger Opt_D_dump_mod_map "Module Map" FormatText (updSDocContext (\ctx -> ctx {sdocLineLength = 200}) $ pprModuleMap (moduleNameProvidersMap unit_state)) let home_unit = mkHomeUnit unit_state (homeUnitId_ dflags) (homeUnitInstanceOf_ dflags) (homeUnitInstantiations_ dflags) -- Try to find platform constants -- -- See Note [Platform constants] in GHC.Platform mconstants <- if homeUnitId_ dflags == rtsUnitId then do -- we're building the RTS! Lookup DerivedConstants.h in the include paths lookupPlatformConstants (includePathsGlobal (includePaths dflags)) else -- lookup the DerivedConstants.h header bundled with the RTS unit. We -- don't fail if we can't find the RTS unit as it can be a valid (but -- uncommon) case, e.g. building a C utility program (not depending on the -- RTS) before building the RTS. In any case, we will fail later on if we -- really need to use the platform constants but they have not been loaded. case lookupUnitId unit_state rtsUnitId of Nothing -> return Nothing Just info -> lookupPlatformConstants (fmap ST.unpack (unitIncludeDirs info)) return (dbs,unit_state,home_unit,mconstants) mkHomeUnit :: UnitState -> UnitId -- ^ Home unit id -> Maybe UnitId -- ^ Home unit instance of -> [(ModuleName, Module)] -- ^ Home unit instantiations -> HomeUnit mkHomeUnit unit_state hu_id hu_instanceof hu_instantiations_ = let -- Some wired units can be used to instantiate the home unit. We need to -- replace their unit keys with their wired unit ids. wmap = wireMap unit_state hu_instantiations = map (fmap (upd_wired_in_mod wmap)) hu_instantiations_ in case (hu_instanceof, hu_instantiations) of (Nothing,[]) -> DefiniteHomeUnit hu_id Nothing (Nothing, _) -> throwGhcException $ CmdLineError ("Use of -instantiated-with requires -this-component-id") (Just _, []) -> throwGhcException $ CmdLineError ("Use of -this-component-id requires -instantiated-with") (Just u, is) -- detect fully indefinite units: all their instantiations are hole -- modules and the home unit id is the same as the instantiating unit -- id (see Note [About units] in GHC.Unit) | all (isHoleModule . snd) is && u == hu_id -> IndefiniteHomeUnit u is -- otherwise it must be that we (fully) instantiate an indefinite unit -- to make it definite. -- TODO: error when the unit is partially instantiated?? | otherwise -> DefiniteHomeUnit hu_id (Just (u, is)) -- ----------------------------------------------------------------------------- -- Reading the unit database(s) readUnitDatabases :: Logger -> UnitConfig -> IO [UnitDatabase UnitId] readUnitDatabases logger cfg = do conf_refs <- getUnitDbRefs cfg confs <- liftM catMaybes $ mapM (resolveUnitDatabase cfg) conf_refs mapM (readUnitDatabase logger cfg) confs getUnitDbRefs :: UnitConfig -> IO [PkgDbRef] getUnitDbRefs cfg = do let system_conf_refs = [UserPkgDb, GlobalPkgDb] e_pkg_path <- tryIO (getEnv $ map toUpper (unitConfigProgramName cfg) ++ "_PACKAGE_PATH") let base_conf_refs = case e_pkg_path of Left _ -> system_conf_refs Right path | Just (xs, x) <- snocView path, isSearchPathSeparator x -> map PkgDbPath (splitSearchPath xs) ++ system_conf_refs | otherwise -> map PkgDbPath (splitSearchPath path) -- Apply the package DB-related flags from the command line to get the -- final list of package DBs. -- -- Notes on ordering: -- * The list of flags is reversed (later ones first) -- * We work with the package DB list in "left shadows right" order -- * and finally reverse it at the end, to get "right shadows left" -- return $ reverse (foldr doFlag base_conf_refs (unitConfigFlagsDB cfg)) where doFlag (PackageDB p) dbs = p : dbs doFlag NoUserPackageDB dbs = filter isNotUser dbs doFlag NoGlobalPackageDB dbs = filter isNotGlobal dbs doFlag ClearPackageDBs _ = [] isNotUser UserPkgDb = False isNotUser _ = True isNotGlobal GlobalPkgDb = False isNotGlobal _ = True -- | Return the path of a package database from a 'PkgDbRef'. Return 'Nothing' -- when the user database filepath is expected but the latter doesn't exist. -- -- NB: This logic is reimplemented in Cabal, so if you change it, -- make sure you update Cabal. (Or, better yet, dump it in the -- compiler info so Cabal can use the info.) resolveUnitDatabase :: UnitConfig -> PkgDbRef -> IO (Maybe FilePath) resolveUnitDatabase cfg GlobalPkgDb = return $ Just (unitConfigGlobalDB cfg) resolveUnitDatabase cfg UserPkgDb = runMaybeT $ do dir <- versionedAppDir (unitConfigProgramName cfg) (unitConfigPlatformArchOS cfg) let pkgconf = dir unitConfigDBName cfg exist <- tryMaybeT $ doesDirectoryExist pkgconf if exist then return pkgconf else mzero resolveUnitDatabase _ (PkgDbPath name) = return $ Just name readUnitDatabase :: Logger -> UnitConfig -> FilePath -> IO (UnitDatabase UnitId) readUnitDatabase logger cfg conf_file = do isdir <- doesDirectoryExist conf_file proto_pkg_configs <- if isdir then readDirStyleUnitInfo conf_file else do isfile <- doesFileExist conf_file if isfile then do mpkgs <- tryReadOldFileStyleUnitInfo case mpkgs of Just pkgs -> return pkgs Nothing -> throwGhcExceptionIO $ InstallationError $ "ghc no longer supports single-file style package " ++ "databases (" ++ conf_file ++ ") use 'ghc-pkg init' to create the database with " ++ "the correct format." else throwGhcExceptionIO $ InstallationError $ "can't find a package database at " ++ conf_file let -- Fix #16360: remove trailing slash from conf_file before calculating pkgroot conf_file' = dropTrailingPathSeparator conf_file top_dir = unitConfigGHCDir cfg pkgroot = takeDirectory conf_file' pkg_configs1 = map (mungeUnitInfo top_dir pkgroot . mapUnitInfo (\(UnitKey x) -> UnitId x) . mkUnitKeyInfo) proto_pkg_configs -- return $ UnitDatabase conf_file' pkg_configs1 where readDirStyleUnitInfo conf_dir = do let filename = conf_dir "package.cache" cache_exists <- doesFileExist filename if cache_exists then do debugTraceMsg logger 2 $ text "Using binary package database:" <+> text filename readPackageDbForGhc filename else do -- If there is no package.cache file, we check if the database is not -- empty by inspecting if the directory contains any .conf file. If it -- does, something is wrong and we fail. Otherwise we assume that the -- database is empty. debugTraceMsg logger 2 $ text "There is no package.cache in" <+> text conf_dir <> text ", checking if the database is empty" db_empty <- all (not . isSuffixOf ".conf") <$> getDirectoryContents conf_dir if db_empty then do debugTraceMsg logger 3 $ text "There are no .conf files in" <+> text conf_dir <> text ", treating" <+> text "package database as empty" return [] else throwGhcExceptionIO $ InstallationError $ "there is no package.cache in " ++ conf_dir ++ " even though package database is not empty" -- Single-file style package dbs have been deprecated for some time, but -- it turns out that Cabal was using them in one place. So this is a -- workaround to allow older Cabal versions to use this newer ghc. -- We check if the file db contains just "[]" and if so, we look for a new -- dir-style db in conf_file.d/, ie in a dir next to the given file. -- We cannot just replace the file with a new dir style since Cabal still -- assumes it's a file and tries to overwrite with 'writeFile'. -- ghc-pkg also cooperates with this workaround. tryReadOldFileStyleUnitInfo = do content <- readFile conf_file `catchIO` \_ -> return "" if take 2 content == "[]" then do let conf_dir = conf_file <.> "d" direxists <- doesDirectoryExist conf_dir if direxists then do debugTraceMsg logger 2 (text "Ignoring old file-style db and trying:" <+> text conf_dir) liftM Just (readDirStyleUnitInfo conf_dir) else return (Just []) -- ghc-pkg will create it when it's updated else return Nothing distrustAllUnits :: [UnitInfo] -> [UnitInfo] distrustAllUnits pkgs = map distrust pkgs where distrust pkg = pkg{ unitIsTrusted = False } mungeUnitInfo :: FilePath -> FilePath -> UnitInfo -> UnitInfo mungeUnitInfo top_dir pkgroot = mungeDynLibFields . mungeUnitInfoPaths (ST.pack top_dir) (ST.pack pkgroot) mungeDynLibFields :: UnitInfo -> UnitInfo mungeDynLibFields pkg = pkg { unitLibraryDynDirs = case unitLibraryDynDirs pkg of [] -> unitLibraryDirs pkg ds -> ds } -- ----------------------------------------------------------------------------- -- Modify our copy of the unit database based on trust flags, -- -trust and -distrust. applyTrustFlag :: UnitPrecedenceMap -> UnusableUnits -> [UnitInfo] -> TrustFlag -> MaybeErr UnitErr [UnitInfo] applyTrustFlag prec_map unusable pkgs flag = case flag of -- we trust all matching packages. Maybe should only trust first one? -- and leave others the same or set them untrusted TrustPackage str -> case selectPackages prec_map (PackageArg str) pkgs unusable of Left ps -> Failed (TrustFlagErr flag ps) Right (ps,qs) -> Succeeded (map trust ps ++ qs) where trust p = p {unitIsTrusted=True} DistrustPackage str -> case selectPackages prec_map (PackageArg str) pkgs unusable of Left ps -> Failed (TrustFlagErr flag ps) Right (ps,qs) -> Succeeded (distrustAllUnits ps ++ qs) applyPackageFlag :: UnitPrecedenceMap -> UnitInfoMap -> PreloadUnitClosure -> UnusableUnits -> Bool -- if False, if you expose a package, it implicitly hides -- any previously exposed packages with the same name -> [UnitInfo] -> VisibilityMap -- Initially exposed -> PackageFlag -- flag to apply -> MaybeErr UnitErr VisibilityMap -- Now exposed applyPackageFlag prec_map pkg_map closure unusable no_hide_others pkgs vm flag = case flag of ExposePackage _ arg (ModRenaming b rns) -> case findPackages prec_map pkg_map closure arg pkgs unusable of Left ps -> Failed (PackageFlagErr flag ps) Right (p:_) -> Succeeded vm' where n = fsPackageName p -- If a user says @-unit-id p[A=]@, this imposes -- a requirement on us: whatever our signature A is, -- it must fulfill all of p[A=]:A's requirements. -- This method is responsible for computing what our -- inherited requirements are. reqs | UnitIdArg orig_uid <- arg = collectHoles orig_uid | otherwise = emptyUniqMap collectHoles uid = case uid of HoleUnit -> emptyUniqMap RealUnit {} -> emptyUniqMap -- definite units don't have holes VirtUnit indef -> let local = [ unitUniqMap (moduleName mod) (Set.singleton $ Module indef mod_name) | (mod_name, mod) <- instUnitInsts indef , isHoleModule mod ] recurse = [ collectHoles (moduleUnit mod) | (_, mod) <- instUnitInsts indef ] in plusUniqMapListWith Set.union $ local ++ recurse uv = UnitVisibility { uv_expose_all = b , uv_renamings = rns , uv_package_name = First (Just n) , uv_requirements = reqs , uv_explicit = Just arg } vm' = addToUniqMap_C mappend vm_cleared (mkUnit p) uv -- In the old days, if you said `ghc -package p-0.1 -package p-0.2` -- (or if p-0.1 was registered in the pkgdb as exposed: True), -- the second package flag would override the first one and you -- would only see p-0.2 in exposed modules. This is good for -- usability. -- -- However, with thinning and renaming (or Backpack), there might be -- situations where you legitimately want to see two versions of a -- package at the same time, and this behavior would make it -- impossible to do so. So we decided that if you pass -- -hide-all-packages, this should turn OFF the overriding behavior -- where an exposed package hides all other packages with the same -- name. This should not affect Cabal at all, which only ever -- exposes one package at a time. -- -- NB: Why a variable no_hide_others? We have to apply this logic to -- -plugin-package too, and it's more consistent if the switch in -- behavior is based off of -- -hide-all-packages/-hide-all-plugin-packages depending on what -- flag is in question. vm_cleared | no_hide_others = vm -- NB: renamings never clear | (_:_) <- rns = vm | otherwise = filterWithKeyUniqMap (\k uv -> k == mkUnit p || First (Just n) /= uv_package_name uv) vm _ -> panic "applyPackageFlag" HidePackage str -> case findPackages prec_map pkg_map closure (PackageArg str) pkgs unusable of Left ps -> Failed (PackageFlagErr flag ps) Right ps -> Succeeded $ foldl' delFromUniqMap vm (map mkUnit ps) -- | Like 'selectPackages', but doesn't return a list of unmatched -- packages. Furthermore, any packages it returns are *renamed* -- if the 'UnitArg' has a renaming associated with it. findPackages :: UnitPrecedenceMap -> UnitInfoMap -> PreloadUnitClosure -> PackageArg -> [UnitInfo] -> UnusableUnits -> Either [(UnitInfo, UnusableUnitReason)] [UnitInfo] findPackages prec_map pkg_map closure arg pkgs unusable = let ps = mapMaybe (finder arg) pkgs in if null ps then Left (mapMaybe (\(x,y) -> finder arg x >>= \x' -> return (x',y)) (nonDetEltsUniqMap unusable)) else Right (sortByPreference prec_map ps) where finder (PackageArg str) p = if matchingStr str p then Just p else Nothing finder (UnitIdArg uid) p = case uid of RealUnit (Definite iuid) | iuid == unitId p -> Just p VirtUnit inst | instUnitInstanceOf inst == unitId p -> Just (renameUnitInfo pkg_map closure (instUnitInsts inst) p) _ -> Nothing selectPackages :: UnitPrecedenceMap -> PackageArg -> [UnitInfo] -> UnusableUnits -> Either [(UnitInfo, UnusableUnitReason)] ([UnitInfo], [UnitInfo]) selectPackages prec_map arg pkgs unusable = let matches = matching arg (ps,rest) = partition matches pkgs in if null ps then Left (filter (matches.fst) (nonDetEltsUniqMap unusable)) else Right (sortByPreference prec_map ps, rest) -- | Rename a 'UnitInfo' according to some module instantiation. renameUnitInfo :: UnitInfoMap -> PreloadUnitClosure -> [(ModuleName, Module)] -> UnitInfo -> UnitInfo renameUnitInfo pkg_map closure insts conf = let hsubst = listToUFM insts smod = renameHoleModule' pkg_map closure hsubst new_insts = map (\(k,v) -> (k,smod v)) (unitInstantiations conf) in conf { unitInstantiations = new_insts, unitExposedModules = map (\(mod_name, mb_mod) -> (mod_name, fmap smod mb_mod)) (unitExposedModules conf) } -- A package named on the command line can either include the -- version, or just the name if it is unambiguous. matchingStr :: String -> UnitInfo -> Bool matchingStr str p = str == unitPackageIdString p || str == unitPackageNameString p matchingId :: UnitId -> UnitInfo -> Bool matchingId uid p = uid == unitId p matching :: PackageArg -> UnitInfo -> Bool matching (PackageArg str) = matchingStr str matching (UnitIdArg (RealUnit (Definite uid))) = matchingId uid matching (UnitIdArg _) = \_ -> False -- TODO: warn in this case -- | This sorts a list of packages, putting "preferred" packages first. -- See 'compareByPreference' for the semantics of "preference". sortByPreference :: UnitPrecedenceMap -> [UnitInfo] -> [UnitInfo] sortByPreference prec_map = sortBy (flip (compareByPreference prec_map)) -- | Returns 'GT' if @pkg@ should be preferred over @pkg'@ when picking -- which should be "active". Here is the order of preference: -- -- 1. First, prefer the latest version -- 2. If the versions are the same, prefer the package that -- came in the latest package database. -- -- Pursuant to #12518, we could change this policy to, for example, remove -- the version preference, meaning that we would always prefer the units -- in later unit database. compareByPreference :: UnitPrecedenceMap -> UnitInfo -> UnitInfo -> Ordering compareByPreference prec_map pkg pkg' = case comparing unitPackageVersion pkg pkg' of GT -> GT EQ | Just prec <- lookupUniqMap prec_map (unitId pkg) , Just prec' <- lookupUniqMap prec_map (unitId pkg') -- Prefer the unit from the later DB flag (i.e., higher -- precedence) -> compare prec prec' | otherwise -> EQ LT -> LT comparing :: Ord a => (t -> a) -> t -> t -> Ordering comparing f a b = f a `compare` f b pprFlag :: PackageFlag -> SDoc pprFlag flag = case flag of HidePackage p -> text "-hide-package " <> text p ExposePackage doc _ _ -> text doc pprTrustFlag :: TrustFlag -> SDoc pprTrustFlag flag = case flag of TrustPackage p -> text "-trust " <> text p DistrustPackage p -> text "-distrust " <> text p -- ----------------------------------------------------------------------------- -- Wired-in units -- -- See Note [Wired-in units] in GHC.Unit.Types type WiringMap = UniqMap UnitId UnitId findWiredInUnits :: Logger -> UnitPrecedenceMap -> [UnitInfo] -- database -> VisibilityMap -- info on what units are visible -- for wired in selection -> IO ([UnitInfo], -- unit database updated for wired in WiringMap) -- map from unit id to wired identity findWiredInUnits logger prec_map pkgs vis_map = do -- Now we must find our wired-in units, and rename them to -- their canonical names (eg. base-1.0 ==> base), as described -- in Note [Wired-in units] in GHC.Unit.Types let matches :: UnitInfo -> UnitId -> Bool pc `matches` pid = unitPackageName pc == PackageName (unitIdFS pid) -- find which package corresponds to each wired-in package -- delete any other packages with the same name -- update the package and any dependencies to point to the new -- one. -- -- When choosing which package to map to a wired-in package -- name, we try to pick the latest version of exposed packages. -- However, if there are no exposed wired in packages available -- (e.g. -hide-all-packages was used), we can't bail: we *have* -- to assign a package for the wired-in package: so we try again -- with hidden packages included to (and pick the latest -- version). -- -- You can also override the default choice by using -ignore-package: -- this works even when there is no exposed wired in package -- available. -- findWiredInUnit :: [UnitInfo] -> UnitId -> IO (Maybe (UnitId, UnitInfo)) findWiredInUnit pkgs wired_pkg = firstJustsM [try all_exposed_ps, try all_ps, notfound] where all_ps = [ p | p <- pkgs, p `matches` wired_pkg ] all_exposed_ps = [ p | p <- all_ps, (mkUnit p) `elemUniqMap` vis_map ] try ps = case sortByPreference prec_map ps of p:_ -> Just <$> pick p _ -> pure Nothing notfound = do debugTraceMsg logger 2 $ text "wired-in package " <> ftext (unitIdFS wired_pkg) <> text " not found." return Nothing pick :: UnitInfo -> IO (UnitId, UnitInfo) pick pkg = do debugTraceMsg logger 2 $ text "wired-in package " <> ftext (unitIdFS wired_pkg) <> text " mapped to " <> ppr (unitId pkg) return (wired_pkg, pkg) mb_wired_in_pkgs <- mapM (findWiredInUnit pkgs) wiredInUnitIds let wired_in_pkgs = catMaybes mb_wired_in_pkgs wiredInMap :: UniqMap UnitId UnitId wiredInMap = listToUniqMap [ (unitId realUnitInfo, wiredInUnitId) | (wiredInUnitId, realUnitInfo) <- wired_in_pkgs , not (unitIsIndefinite realUnitInfo) ] updateWiredInDependencies pkgs = map (upd_deps . upd_pkg) pkgs where upd_pkg pkg | Just wiredInUnitId <- lookupUniqMap wiredInMap (unitId pkg) = pkg { unitId = wiredInUnitId , unitInstanceOf = wiredInUnitId -- every non instantiated unit is an instance of -- itself (required by Backpack...) -- -- See Note [About units] in GHC.Unit } | otherwise = pkg upd_deps pkg = pkg { unitDepends = map (upd_wired_in wiredInMap) (unitDepends pkg), unitExposedModules = map (\(k,v) -> (k, fmap (upd_wired_in_mod wiredInMap) v)) (unitExposedModules pkg) } return (updateWiredInDependencies pkgs, wiredInMap) -- Helper functions for rewiring Module and Unit. These -- rewrite Units of modules in wired-in packages to the form known to the -- compiler, as described in Note [Wired-in units] in GHC.Unit.Types. -- -- For instance, base-4.9.0.0 will be rewritten to just base, to match -- what appears in GHC.Builtin.Names. upd_wired_in_mod :: WiringMap -> Module -> Module upd_wired_in_mod wiredInMap (Module uid m) = Module (upd_wired_in_uid wiredInMap uid) m upd_wired_in_uid :: WiringMap -> Unit -> Unit upd_wired_in_uid wiredInMap u = case u of HoleUnit -> HoleUnit RealUnit (Definite uid) -> RealUnit (Definite (upd_wired_in wiredInMap uid)) VirtUnit indef_uid -> VirtUnit $ mkInstantiatedUnit (instUnitInstanceOf indef_uid) (map (\(x,y) -> (x,upd_wired_in_mod wiredInMap y)) (instUnitInsts indef_uid)) upd_wired_in :: WiringMap -> UnitId -> UnitId upd_wired_in wiredInMap key | Just key' <- lookupUniqMap wiredInMap key = key' | otherwise = key updateVisibilityMap :: WiringMap -> VisibilityMap -> VisibilityMap updateVisibilityMap wiredInMap vis_map = foldl' f vis_map (nonDetUniqMapToList wiredInMap) where f vm (from, to) = case lookupUniqMap vis_map (RealUnit (Definite from)) of Nothing -> vm Just r -> addToUniqMap (delFromUniqMap vm (RealUnit (Definite from))) (RealUnit (Definite to)) r -- ---------------------------------------------------------------------------- -- | The reason why a unit is unusable. data UnusableUnitReason = -- | We ignored it explicitly using @-ignore-package@. IgnoredWithFlag -- | This unit transitively depends on a unit that was never present -- in any of the provided databases. | BrokenDependencies [UnitId] -- | This unit transitively depends on a unit involved in a cycle. -- Note that the list of 'UnitId' reports the direct dependencies -- of this unit that (transitively) depended on the cycle, and not -- the actual cycle itself (which we report separately at high verbosity.) | CyclicDependencies [UnitId] -- | This unit transitively depends on a unit which was ignored. | IgnoredDependencies [UnitId] -- | This unit transitively depends on a unit which was -- shadowed by an ABI-incompatible unit. | ShadowedDependencies [UnitId] instance Outputable UnusableUnitReason where ppr IgnoredWithFlag = text "[ignored with flag]" ppr (BrokenDependencies uids) = brackets (text "broken" <+> ppr uids) ppr (CyclicDependencies uids) = brackets (text "cyclic" <+> ppr uids) ppr (IgnoredDependencies uids) = brackets (text "ignored" <+> ppr uids) ppr (ShadowedDependencies uids) = brackets (text "shadowed" <+> ppr uids) type UnusableUnits = UniqMap UnitId (UnitInfo, UnusableUnitReason) pprReason :: SDoc -> UnusableUnitReason -> SDoc pprReason pref reason = case reason of IgnoredWithFlag -> pref <+> text "ignored due to an -ignore-package flag" BrokenDependencies deps -> pref <+> text "unusable due to missing dependencies:" $$ nest 2 (hsep (map ppr deps)) CyclicDependencies deps -> pref <+> text "unusable due to cyclic dependencies:" $$ nest 2 (hsep (map ppr deps)) IgnoredDependencies deps -> pref <+> text ("unusable because the -ignore-package flag was used to " ++ "ignore at least one of its dependencies:") $$ nest 2 (hsep (map ppr deps)) ShadowedDependencies deps -> pref <+> text "unusable due to shadowed dependencies:" $$ nest 2 (hsep (map ppr deps)) reportCycles :: Logger -> [SCC UnitInfo] -> IO () reportCycles logger sccs = mapM_ report sccs where report (AcyclicSCC _) = return () report (CyclicSCC vs) = debugTraceMsg logger 2 $ text "these packages are involved in a cycle:" $$ nest 2 (hsep (map (ppr . unitId) vs)) reportUnusable :: Logger -> UnusableUnits -> IO () reportUnusable logger pkgs = mapM_ report (nonDetUniqMapToList pkgs) where report (ipid, (_, reason)) = debugTraceMsg logger 2 $ pprReason (text "package" <+> ppr ipid <+> text "is") reason -- ---------------------------------------------------------------------------- -- -- Utilities on the database -- -- | A reverse dependency index, mapping an 'UnitId' to -- the 'UnitId's which have a dependency on it. type RevIndex = UniqMap UnitId [UnitId] -- | Compute the reverse dependency index of a unit database. reverseDeps :: UnitInfoMap -> RevIndex reverseDeps db = nonDetFoldUniqMap go emptyUniqMap db where go :: (UnitId, UnitInfo) -> RevIndex -> RevIndex go (_uid, pkg) r = foldl' (go' (unitId pkg)) r (unitDepends pkg) go' from r to = addToUniqMap_C (++) r to [from] -- | Given a list of 'UnitId's to remove, a database, -- and a reverse dependency index (as computed by 'reverseDeps'), -- remove those units, plus any units which depend on them. -- Returns the pruned database, as well as a list of 'UnitInfo's -- that was removed. removeUnits :: [UnitId] -> RevIndex -> UnitInfoMap -> (UnitInfoMap, [UnitInfo]) removeUnits uids index m = go uids (m,[]) where go [] (m,pkgs) = (m,pkgs) go (uid:uids) (m,pkgs) | Just pkg <- lookupUniqMap m uid = case lookupUniqMap index uid of Nothing -> go uids (delFromUniqMap m uid, pkg:pkgs) Just rdeps -> go (rdeps ++ uids) (delFromUniqMap m uid, pkg:pkgs) | otherwise = go uids (m,pkgs) -- | Given a 'UnitInfo' from some 'UnitInfoMap', return all entries in 'depends' -- which correspond to units that do not exist in the index. depsNotAvailable :: UnitInfoMap -> UnitInfo -> [UnitId] depsNotAvailable pkg_map pkg = filter (not . (`elemUniqMap` pkg_map)) (unitDepends pkg) -- | Given a 'UnitInfo' from some 'UnitInfoMap' return all entries in -- 'unitAbiDepends' which correspond to units that do not exist, OR have -- mismatching ABIs. depsAbiMismatch :: UnitInfoMap -> UnitInfo -> [UnitId] depsAbiMismatch pkg_map pkg = map fst . filter (not . abiMatch) $ unitAbiDepends pkg where abiMatch (dep_uid, abi) | Just dep_pkg <- lookupUniqMap pkg_map dep_uid = unitAbiHash dep_pkg == abi | otherwise = False -- ----------------------------------------------------------------------------- -- Ignore units ignoreUnits :: [IgnorePackageFlag] -> [UnitInfo] -> UnusableUnits ignoreUnits flags pkgs = listToUniqMap (concatMap doit flags) where doit (IgnorePackage str) = case partition (matchingStr str) pkgs of (ps, _) -> [ (unitId p, (p, IgnoredWithFlag)) | p <- ps ] -- missing unit is not an error for -ignore-package, -- because a common usage is to -ignore-package P as -- a preventative measure just in case P exists. -- ---------------------------------------------------------------------------- -- -- Merging databases -- -- | For each unit, a mapping from uid -> i indicates that this -- unit was brought into GHC by the ith @-package-db@ flag on -- the command line. We use this mapping to make sure we prefer -- units that were defined later on the command line, if there -- is an ambiguity. type UnitPrecedenceMap = UniqMap UnitId Int -- | Given a list of databases, merge them together, where -- units with the same unit id in later databases override -- earlier ones. This does NOT check if the resulting database -- makes sense (that's done by 'validateDatabase'). mergeDatabases :: Logger -> [UnitDatabase UnitId] -> IO (UnitInfoMap, UnitPrecedenceMap) mergeDatabases logger = foldM merge (emptyUniqMap, emptyUniqMap) . zip [1..] where merge (pkg_map, prec_map) (i, UnitDatabase db_path db) = do debugTraceMsg logger 2 $ text "loading package database" <+> text db_path forM_ (Set.toList override_set) $ \pkg -> debugTraceMsg logger 2 $ text "package" <+> ppr pkg <+> text "overrides a previously defined package" return (pkg_map', prec_map') where db_map = mk_pkg_map db mk_pkg_map = listToUniqMap . map (\p -> (unitId p, p)) -- The set of UnitIds which appear in both db and pkgs. These are the -- ones that get overridden. Compute this just to give some -- helpful debug messages at -v2 override_set :: Set UnitId override_set = Set.intersection (nonDetUniqMapToKeySet db_map) (nonDetUniqMapToKeySet pkg_map) -- Now merge the sets together (NB: in case of duplicate, -- first argument preferred) pkg_map' :: UnitInfoMap pkg_map' = pkg_map `plusUniqMap` db_map prec_map' :: UnitPrecedenceMap prec_map' = prec_map `plusUniqMap` (mapUniqMap (const i) db_map) -- | Validates a database, removing unusable units from it -- (this includes removing units that the user has explicitly -- ignored.) Our general strategy: -- -- 1. Remove all broken units (dangling dependencies) -- 2. Remove all units that are cyclic -- 3. Apply ignore flags -- 4. Remove all units which have deps with mismatching ABIs -- validateDatabase :: UnitConfig -> UnitInfoMap -> (UnitInfoMap, UnusableUnits, [SCC UnitInfo]) validateDatabase cfg pkg_map1 = (pkg_map5, unusable, sccs) where ignore_flags = reverse (unitConfigFlagsIgnored cfg) -- Compute the reverse dependency index index = reverseDeps pkg_map1 -- Helper function mk_unusable mk_err dep_matcher m uids = listToUniqMap [ (unitId pkg, (pkg, mk_err (dep_matcher m pkg))) | pkg <- uids ] -- Find broken units directly_broken = filter (not . null . depsNotAvailable pkg_map1) (nonDetEltsUniqMap pkg_map1) (pkg_map2, broken) = removeUnits (map unitId directly_broken) index pkg_map1 unusable_broken = mk_unusable BrokenDependencies depsNotAvailable pkg_map2 broken -- Find recursive units sccs = stronglyConnComp [ (pkg, unitId pkg, unitDepends pkg) | pkg <- nonDetEltsUniqMap pkg_map2 ] getCyclicSCC (CyclicSCC vs) = map unitId vs getCyclicSCC (AcyclicSCC _) = [] (pkg_map3, cyclic) = removeUnits (concatMap getCyclicSCC sccs) index pkg_map2 unusable_cyclic = mk_unusable CyclicDependencies depsNotAvailable pkg_map3 cyclic -- Apply ignore flags directly_ignored = ignoreUnits ignore_flags (nonDetEltsUniqMap pkg_map3) (pkg_map4, ignored) = removeUnits (nonDetKeysUniqMap directly_ignored) index pkg_map3 unusable_ignored = mk_unusable IgnoredDependencies depsNotAvailable pkg_map4 ignored -- Knock out units whose dependencies don't agree with ABI -- (i.e., got invalidated due to shadowing) directly_shadowed = filter (not . null . depsAbiMismatch pkg_map4) (nonDetEltsUniqMap pkg_map4) (pkg_map5, shadowed) = removeUnits (map unitId directly_shadowed) index pkg_map4 unusable_shadowed = mk_unusable ShadowedDependencies depsAbiMismatch pkg_map5 shadowed -- combine all unusables. The order is important for shadowing. -- plusUniqMapList folds using plusUFM which is right biased (opposite of -- Data.Map.union) so the head of the list should be the least preferred unusable = plusUniqMapList [ unusable_shadowed , unusable_cyclic , unusable_broken , unusable_ignored , directly_ignored ] -- ----------------------------------------------------------------------------- -- When all the command-line options are in, we can process our unit -- settings and populate the unit state. mkUnitState :: Logger -> UnitConfig -> IO (UnitState,[UnitDatabase UnitId]) mkUnitState logger cfg = do {- Plan. There are two main steps for making the package state: 1. We want to build a single, unified package database based on all of the input databases, which upholds the invariant that there is only one package per any UnitId and there are no dangling dependencies. We'll do this by merging, and then successively filtering out bad dependencies. a) Merge all the databases together. If an input database defines unit ID that is already in the unified database, that package SHADOWS the existing package in the current unified database. Note that order is important: packages defined later in the list of command line arguments shadow those defined earlier. b) Remove all packages with missing dependencies, or mutually recursive dependencies. b) Remove packages selected by -ignore-package from input database c) Remove all packages which depended on packages that are now shadowed by an ABI-incompatible package d) report (with -v) any packages that were removed by steps 1-3 2. We want to look at the flags controlling package visibility, and build a mapping of what module names are in scope and where they live. a) on the final, unified database, we apply -trust/-distrust flags directly, modifying the database so that the 'trusted' field has the correct value. b) we use the -package/-hide-package flags to compute a visibility map, stating what packages are "exposed" for the purposes of computing the module map. * if any flag refers to a package which was removed by 1-5, then we can give an error message explaining why * if -hide-all-packages was not specified, this step also hides packages which are superseded by later exposed packages * this step is done TWICE if -plugin-package/-hide-all-plugin-packages are used c) based on the visibility map, we pick wired packages and rewrite them to have the expected unitId. d) finally, using the visibility map and the package database, we build a mapping saying what every in scope module name points to. -} -- if databases have not been provided, read the database flags raw_dbs <- case unitConfigDBCache cfg of Nothing -> readUnitDatabases logger cfg Just dbs -> return dbs -- distrust all units if the flag is set let distrust_all db = db { unitDatabaseUnits = distrustAllUnits (unitDatabaseUnits db) } dbs | unitConfigDistrustAll cfg = map distrust_all raw_dbs | otherwise = raw_dbs -- This, and the other reverse's that you will see, are due to the fact that -- packageFlags, pluginPackageFlags, etc. are all specified in *reverse* order -- than they are on the command line. let raw_other_flags = reverse (unitConfigFlagsExposed cfg) (hpt_flags, other_flags) = partition (selectHptFlag (unitConfigHomeUnits cfg)) raw_other_flags debugTraceMsg logger 2 $ text "package flags" <+> ppr other_flags let home_unit_deps = selectHomeUnits (unitConfigHomeUnits cfg) hpt_flags -- Merge databases together, without checking validity (pkg_map1, prec_map) <- mergeDatabases logger dbs -- Now that we've merged everything together, prune out unusable -- packages. let (pkg_map2, unusable, sccs) = validateDatabase cfg pkg_map1 reportCycles logger sccs reportUnusable logger unusable -- Apply trust flags (these flags apply regardless of whether -- or not packages are visible or not) pkgs1 <- mayThrowUnitErr $ foldM (applyTrustFlag prec_map unusable) (nonDetEltsUniqMap pkg_map2) (reverse (unitConfigFlagsTrusted cfg)) let prelim_pkg_db = mkUnitInfoMap pkgs1 -- -- Calculate the initial set of units from package databases, prior to any package flags. -- -- Conceptually, we select the latest versions of all valid (not unusable) *packages* -- (not units). This is empty if we have -hide-all-packages. -- -- Then we create an initial visibility map with default visibilities for all -- exposed, definite units which belong to the latest valid packages. -- let preferLater unit unit' = case compareByPreference prec_map unit unit' of GT -> unit _ -> unit' addIfMorePreferable m unit = addToUDFM_C preferLater m (fsPackageName unit) unit -- This is the set of maximally preferable packages. In fact, it is a set of -- most preferable *units* keyed by package name, which act as stand-ins in -- for "a package in a database". We use units here because we don't have -- "a package in a database" as a type currently. mostPreferablePackageReps = if unitConfigHideAll cfg then emptyUDFM else foldl' addIfMorePreferable emptyUDFM pkgs1 -- When exposing units, we want to consider all of those in the most preferable -- packages. We can implement that by looking for units that are equi-preferable -- with the most preferable unit for package. Being equi-preferable means that -- they must be in the same database, with the same version, and the same package name. -- -- We must take care to consider all these units and not just the most -- preferable one, otherwise we can end up with problems like #16228. mostPreferable u = case lookupUDFM mostPreferablePackageReps (fsPackageName u) of Nothing -> False Just u' -> compareByPreference prec_map u u' == EQ vis_map1 = foldl' (\vm p -> -- Note: we NEVER expose indefinite packages by -- default, because it's almost assuredly not -- what you want (no mix-in linking has occurred). if unitIsExposed p && unitIsDefinite (mkUnit p) && mostPreferable p then addToUniqMap vm (mkUnit p) UnitVisibility { uv_expose_all = True, uv_renamings = [], uv_package_name = First (Just (fsPackageName p)), uv_requirements = emptyUniqMap, uv_explicit = Nothing } else vm) emptyUniqMap pkgs1 -- -- Compute a visibility map according to the command-line flags (-package, -- -hide-package). This needs to know about the unusable packages, since if a -- user tries to enable an unusable package, we should let them know. -- vis_map2 <- mayThrowUnitErr $ foldM (applyPackageFlag prec_map prelim_pkg_db emptyUniqSet unusable (unitConfigHideAll cfg) pkgs1) vis_map1 other_flags -- -- Sort out which packages are wired in. This has to be done last, since -- it modifies the unit ids of wired in packages, but when we process -- package arguments we need to key against the old versions. -- (pkgs2, wired_map) <- findWiredInUnits logger prec_map pkgs1 vis_map2 let pkg_db = mkUnitInfoMap pkgs2 -- Update the visibility map, so we treat wired packages as visible. let vis_map = updateVisibilityMap wired_map vis_map2 let hide_plugin_pkgs = unitConfigHideAllPlugins cfg plugin_vis_map <- case unitConfigFlagsPlugins cfg of -- common case; try to share the old vis_map [] | not hide_plugin_pkgs -> return vis_map | otherwise -> return emptyUniqMap _ -> do let plugin_vis_map1 | hide_plugin_pkgs = emptyUniqMap -- Use the vis_map PRIOR to wired in, -- because otherwise applyPackageFlag -- won't work. | otherwise = vis_map2 plugin_vis_map2 <- mayThrowUnitErr $ foldM (applyPackageFlag prec_map prelim_pkg_db emptyUniqSet unusable hide_plugin_pkgs pkgs1) plugin_vis_map1 (reverse (unitConfigFlagsPlugins cfg)) -- Updating based on wired in packages is mostly -- good hygiene, because it won't matter: no wired in -- package has a compiler plugin. -- TODO: If a wired in package had a compiler plugin, -- and you tried to pick different wired in packages -- with the plugin flags and the normal flags... what -- would happen? I don't know! But this doesn't seem -- likely to actually happen. return (updateVisibilityMap wired_map plugin_vis_map2) let pkgname_map = listToUFM [ (unitPackageName p, unitInstanceOf p) | p <- pkgs2 ] -- The explicitUnits accurately reflects the set of units we have turned -- on; as such, it also is the only way one can come up with requirements. -- The requirement context is directly based off of this: we simply -- look for nested unit IDs that are directly fed holes: the requirements -- of those units are precisely the ones we need to track let explicit_pkgs = [(k, uv_explicit v) | (k, v) <- nonDetUniqMapToList vis_map] req_ctx = mapUniqMap (Set.toList) $ plusUniqMapListWith Set.union (map uv_requirements (nonDetEltsUniqMap vis_map)) -- -- Here we build up a set of the packages mentioned in -package -- flags on the command line; these are called the "preload" -- packages. we link these packages in eagerly. The preload set -- should contain at least rts & base, which is why we pretend that -- the command line contains -package rts & -package base. -- -- NB: preload IS important even for type-checking, because we -- need the correct include path to be set. -- let preload1 = nonDetKeysUniqMap (filterUniqMap (isJust . uv_explicit) vis_map) -- add default preload units if they can be found in the db basicLinkedUnits = fmap (RealUnit . Definite) $ filter (flip elemUniqMap pkg_db) $ unitConfigAutoLink cfg preload3 = ordNub $ (basicLinkedUnits ++ preload1) -- Close the preload packages with their dependencies dep_preload <- mayThrowUnitErr $ closeUnitDeps pkg_db $ zip (map toUnitId preload3) (repeat Nothing) let mod_map1 = mkModuleNameProvidersMap logger cfg pkg_db emptyUniqSet vis_map mod_map2 = mkUnusableModuleNameProvidersMap unusable mod_map = mod_map2 `plusUniqMap` mod_map1 -- Force the result to avoid leaking input parameters let !state = UnitState { preloadUnits = dep_preload , explicitUnits = explicit_pkgs , homeUnitDepends = Set.toList home_unit_deps , unitInfoMap = pkg_db , preloadClosure = emptyUniqSet , moduleNameProvidersMap = mod_map , pluginModuleNameProvidersMap = mkModuleNameProvidersMap logger cfg pkg_db emptyUniqSet plugin_vis_map , packageNameMap = pkgname_map , wireMap = wired_map , unwireMap = listToUniqMap [ (v,k) | (k,v) <- nonDetUniqMapToList wired_map ] , requirementContext = req_ctx , allowVirtualUnits = unitConfigAllowVirtual cfg } return (state, raw_dbs) selectHptFlag :: Set.Set UnitId -> PackageFlag -> Bool selectHptFlag home_units (ExposePackage _ (UnitIdArg uid) _) | toUnitId uid `Set.member` home_units = True selectHptFlag _ _ = False selectHomeUnits :: Set.Set UnitId -> [PackageFlag] -> Set.Set UnitId selectHomeUnits home_units flags = foldl' go Set.empty flags where go :: Set.Set UnitId -> PackageFlag -> Set.Set UnitId go cur (ExposePackage _ (UnitIdArg uid) _) | toUnitId uid `Set.member` home_units = Set.insert (toUnitId uid) cur -- MP: This does not yet support thinning/renaming go cur _ = cur -- | Given a wired-in 'Unit', "unwire" it into the 'Unit' -- that it was recorded as in the package database. unwireUnit :: UnitState -> Unit -> Unit unwireUnit state uid@(RealUnit (Definite def_uid)) = maybe uid (RealUnit . Definite) (lookupUniqMap (unwireMap state) def_uid) unwireUnit _ uid = uid -- ----------------------------------------------------------------------------- -- | Makes the mapping from ModuleName to package info -- Slight irritation: we proceed by leafing through everything -- in the installed package database, which makes handling indefinite -- packages a bit bothersome. mkModuleNameProvidersMap :: Logger -> UnitConfig -> UnitInfoMap -> PreloadUnitClosure -> VisibilityMap -> ModuleNameProvidersMap mkModuleNameProvidersMap logger cfg pkg_map closure vis_map = -- What should we fold on? Both situations are awkward: -- -- * Folding on the visibility map means that we won't create -- entries for packages that aren't mentioned in vis_map -- (e.g., hidden packages, causing #14717) -- -- * Folding on pkg_map is awkward because if we have an -- Backpack instantiation, we need to possibly add a -- package from pkg_map multiple times to the actual -- ModuleNameProvidersMap. Also, we don't really want -- definite package instantiations to show up in the -- list of possibilities. -- -- So what will we do instead? We'll extend vis_map with -- entries for every definite (for non-Backpack) and -- indefinite (for Backpack) package, so that we get the -- hidden entries we need. nonDetFoldUniqMap extend_modmap emptyMap vis_map_extended where vis_map_extended = {- preferred -} default_vis `plusUniqMap` vis_map default_vis = listToUniqMap [ (mkUnit pkg, mempty) | (_, pkg) <- nonDetUniqMapToList pkg_map -- Exclude specific instantiations of an indefinite -- package , unitIsIndefinite pkg || null (unitInstantiations pkg) ] emptyMap = emptyUniqMap setOrigins m os = fmap (const os) m extend_modmap (uid, UnitVisibility { uv_expose_all = b, uv_renamings = rns }) modmap = addListTo modmap theBindings where pkg = unit_lookup uid theBindings :: [(ModuleName, UniqMap Module ModuleOrigin)] theBindings = newBindings b rns newBindings :: Bool -> [(ModuleName, ModuleName)] -> [(ModuleName, UniqMap Module ModuleOrigin)] newBindings e rns = es e ++ hiddens ++ map rnBinding rns rnBinding :: (ModuleName, ModuleName) -> (ModuleName, UniqMap Module ModuleOrigin) rnBinding (orig, new) = (new, setOrigins origEntry fromFlag) where origEntry = case lookupUFM esmap orig of Just r -> r Nothing -> throwGhcException (CmdLineError (renderWithContext (log_default_user_context (logFlags logger)) (text "package flag: could not find module name" <+> ppr orig <+> text "in package" <+> ppr pk))) es :: Bool -> [(ModuleName, UniqMap Module ModuleOrigin)] es e = do (m, exposedReexport) <- exposed_mods let (pk', m', origin') = case exposedReexport of Nothing -> (pk, m, fromExposedModules e) Just (Module pk' m') -> (pk', m', fromReexportedModules e pkg) return (m, mkModMap pk' m' origin') esmap :: UniqFM ModuleName (UniqMap Module ModuleOrigin) esmap = listToUFM (es False) -- parameter here doesn't matter, orig will -- be overwritten hiddens = [(m, mkModMap pk m ModHidden) | m <- hidden_mods] pk = mkUnit pkg unit_lookup uid = lookupUnit' (unitConfigAllowVirtual cfg) pkg_map closure uid `orElse` pprPanic "unit_lookup" (ppr uid) exposed_mods = unitExposedModules pkg hidden_mods = unitHiddenModules pkg -- | Make a 'ModuleNameProvidersMap' covering a set of unusable packages. mkUnusableModuleNameProvidersMap :: UnusableUnits -> ModuleNameProvidersMap mkUnusableModuleNameProvidersMap unusables = nonDetFoldUniqMap extend_modmap emptyUniqMap unusables where extend_modmap (_uid, (unit_info, reason)) modmap = addListTo modmap bindings where bindings :: [(ModuleName, UniqMap Module ModuleOrigin)] bindings = exposed ++ hidden origin_reexport = ModUnusable (UnusableUnit unit reason True) origin_normal = ModUnusable (UnusableUnit unit reason False) unit = mkUnit unit_info exposed = map get_exposed exposed_mods hidden = [(m, mkModMap unit m origin_normal) | m <- hidden_mods] -- with re-exports, c:Foo can be reexported from two (or more) -- unusable packages: -- Foo -> a:Foo (unusable reason A) -> c:Foo -- -> b:Foo (unusable reason B) -> c:Foo -- -- We must be careful to not record the following (#21097): -- Foo -> c:Foo (unusable reason A) -- -> c:Foo (unusable reason B) -- But: -- Foo -> a:Foo (unusable reason A) -- -> b:Foo (unusable reason B) -- get_exposed (mod, Just _) = (mod, mkModMap unit mod origin_reexport) get_exposed (mod, _) = (mod, mkModMap unit mod origin_normal) -- in the reexport case, we create a virtual module that doesn't -- exist but we don't care as it's only used as a key in the map. exposed_mods = unitExposedModules unit_info hidden_mods = unitHiddenModules unit_info -- | Add a list of key/value pairs to a nested map. -- -- The outer map is processed with 'Data.Map.Strict' to prevent memory leaks -- when reloading modules in GHCi (see #4029). This ensures that each -- value is forced before installing into the map. addListTo :: (Monoid a, Ord k1, Ord k2, Uniquable k1, Uniquable k2) => UniqMap k1 (UniqMap k2 a) -> [(k1, UniqMap k2 a)] -> UniqMap k1 (UniqMap k2 a) addListTo = foldl' merge where merge m (k, v) = addToUniqMap_C (plusUniqMap_C mappend) m k v -- | Create a singleton module mapping mkModMap :: Unit -> ModuleName -> ModuleOrigin -> UniqMap Module ModuleOrigin mkModMap pkg mod = unitUniqMap (mkModule pkg mod) -- ----------------------------------------------------------------------------- -- Package Utils -- | Takes a 'ModuleName', and if the module is in any package returns -- list of modules which take that name. lookupModuleInAllUnits :: UnitState -> ModuleName -> [(Module, UnitInfo)] lookupModuleInAllUnits pkgs m = case lookupModuleWithSuggestions pkgs m NoPkgQual of LookupFound a b -> [(a,fst b)] LookupMultiple rs -> map f rs where f (m,_) = (m, expectJust "lookupModule" (lookupUnit pkgs (moduleUnit m))) _ -> [] -- | The result of performing a lookup data LookupResult = -- | Found the module uniquely, nothing else to do LookupFound Module (UnitInfo, ModuleOrigin) -- | Multiple modules with the same name in scope | LookupMultiple [(Module, ModuleOrigin)] -- | No modules found, but there were some hidden ones with -- an exact name match. First is due to package hidden, second -- is due to module being hidden | LookupHidden [(Module, ModuleOrigin)] [(Module, ModuleOrigin)] -- | No modules found, but there were some unusable ones with -- an exact name match | LookupUnusable [(Module, ModuleOrigin)] -- | Nothing found, here are some suggested different names | LookupNotFound [ModuleSuggestion] -- suggestions data ModuleSuggestion = SuggestVisible ModuleName Module ModuleOrigin | SuggestHidden ModuleName Module ModuleOrigin lookupModuleWithSuggestions :: UnitState -> ModuleName -> PkgQual -> LookupResult lookupModuleWithSuggestions pkgs = lookupModuleWithSuggestions' pkgs (moduleNameProvidersMap pkgs) -- | The package which the module **appears** to come from, this could be -- the one which reexports the module from it's original package. This function -- is currently only used for -Wunused-packages lookupModulePackage :: UnitState -> ModuleName -> PkgQual -> Maybe [UnitInfo] lookupModulePackage pkgs mn mfs = case lookupModuleWithSuggestions' pkgs (moduleNameProvidersMap pkgs) mn mfs of LookupFound _ (orig_unit, origin) -> case origin of ModOrigin {fromOrigUnit, fromExposedReexport} -> case fromOrigUnit of -- Just True means, the import is available from its original location Just True -> pure [orig_unit] -- Otherwise, it must be available from a reexport _ -> pure fromExposedReexport _ -> Nothing _ -> Nothing lookupPluginModuleWithSuggestions :: UnitState -> ModuleName -> PkgQual -> LookupResult lookupPluginModuleWithSuggestions pkgs = lookupModuleWithSuggestions' pkgs (pluginModuleNameProvidersMap pkgs) lookupModuleWithSuggestions' :: UnitState -> ModuleNameProvidersMap -> ModuleName -> PkgQual -> LookupResult lookupModuleWithSuggestions' pkgs mod_map m mb_pn = case lookupUniqMap mod_map m of Nothing -> LookupNotFound suggestions Just xs -> case foldl' classify ([],[],[], []) (sortOn fst $ nonDetUniqMapToList xs) of ([], [], [], []) -> LookupNotFound suggestions (_, _, _, [(m, o)]) -> LookupFound m (mod_unit m, o) (_, _, _, exposed@(_:_)) -> LookupMultiple exposed ([], [], unusable@(_:_), []) -> LookupUnusable unusable (hidden_pkg, hidden_mod, _, []) -> LookupHidden hidden_pkg hidden_mod where classify (hidden_pkg, hidden_mod, unusable, exposed) (m, origin0) = let origin = filterOrigin mb_pn (mod_unit m) origin0 x = (m, origin) in case origin of ModHidden -> (hidden_pkg, x:hidden_mod, unusable, exposed) ModUnusable _ -> (hidden_pkg, hidden_mod, x:unusable, exposed) _ | originEmpty origin -> (hidden_pkg, hidden_mod, unusable, exposed) | originVisible origin -> (hidden_pkg, hidden_mod, unusable, x:exposed) | otherwise -> (x:hidden_pkg, hidden_mod, unusable, exposed) unit_lookup p = lookupUnit pkgs p `orElse` pprPanic "lookupModuleWithSuggestions" (ppr p <+> ppr m) mod_unit = unit_lookup . moduleUnit -- Filters out origins which are not associated with the given package -- qualifier. No-op if there is no package qualifier. Test if this -- excluded all origins with 'originEmpty'. filterOrigin :: PkgQual -> UnitInfo -> ModuleOrigin -> ModuleOrigin filterOrigin NoPkgQual _ o = o filterOrigin (ThisPkg _) _ o = o filterOrigin (OtherPkg u) pkg o = let match_pkg p = u == unitId p in case o of ModHidden | match_pkg pkg -> ModHidden | otherwise -> mempty ModUnusable _ | match_pkg pkg -> o | otherwise -> mempty ModOrigin { fromOrigUnit = e, fromExposedReexport = res, fromHiddenReexport = rhs } -> ModOrigin { fromOrigUnit = if match_pkg pkg then e else Nothing , fromExposedReexport = filter match_pkg res , fromHiddenReexport = filter match_pkg rhs , fromPackageFlag = False -- always excluded } suggestions = fuzzyLookup (moduleNameString m) all_mods all_mods :: [(String, ModuleSuggestion)] -- All modules all_mods = sortBy (comparing fst) $ [ (moduleNameString m, suggestion) | (m, e) <- nonDetUniqMapToList (moduleNameProvidersMap pkgs) , suggestion <- map (getSuggestion m) (nonDetUniqMapToList e) ] getSuggestion name (mod, origin) = (if originVisible origin then SuggestVisible else SuggestHidden) name mod origin listVisibleModuleNames :: UnitState -> [ModuleName] listVisibleModuleNames state = map fst (filter visible (nonDetUniqMapToList (moduleNameProvidersMap state))) where visible (_, ms) = anyUniqMap originVisible ms -- | Takes a list of UnitIds (and their "parent" dependency, used for error -- messages), and returns the list with dependencies included, in reverse -- dependency order (a units appears before those it depends on). closeUnitDeps :: UnitInfoMap -> [(UnitId,Maybe UnitId)] -> MaybeErr UnitErr [UnitId] closeUnitDeps pkg_map ps = closeUnitDeps' pkg_map [] ps -- | Similar to closeUnitDeps but takes a list of already loaded units as an -- additional argument. closeUnitDeps' :: UnitInfoMap -> [UnitId] -> [(UnitId,Maybe UnitId)] -> MaybeErr UnitErr [UnitId] closeUnitDeps' pkg_map current_ids ps = foldM (uncurry . add_unit pkg_map) current_ids ps -- | Add a UnitId and those it depends on (recursively) to the given list of -- UnitIds if they are not already in it. Return a list in reverse dependency -- order (a unit appears before those it depends on). -- -- The UnitId is looked up in the given UnitInfoMap (to find its dependencies). -- It it's not found, the optional parent unit is used to return a more precise -- error message ("dependency of "). add_unit :: UnitInfoMap -> [UnitId] -> UnitId -> Maybe UnitId -> MaybeErr UnitErr [UnitId] add_unit pkg_map ps p mb_parent | p `elem` ps = return ps -- Check if we've already added this unit | otherwise = case lookupUnitId' pkg_map p of Nothing -> Failed (CloseUnitErr p mb_parent) Just info -> do -- Add the unit's dependents also ps' <- foldM add_unit_key ps (unitDepends info) return (p : ps') where add_unit_key xs key = add_unit pkg_map xs key (Just p) data UnitErr = CloseUnitErr !UnitId !(Maybe UnitId) | PackageFlagErr !PackageFlag ![(UnitInfo,UnusableUnitReason)] | TrustFlagErr !TrustFlag ![(UnitInfo,UnusableUnitReason)] mayThrowUnitErr :: MaybeErr UnitErr a -> IO a mayThrowUnitErr = \case Failed e -> throwGhcExceptionIO $ CmdLineError $ renderWithContext defaultSDocContext $ withPprStyle defaultUserStyle $ ppr e Succeeded a -> return a instance Outputable UnitErr where ppr = \case CloseUnitErr p mb_parent -> (text "unknown unit:" <+> ppr p) <> case mb_parent of Nothing -> Outputable.empty Just parent -> space <> parens (text "dependency of" <+> ftext (unitIdFS parent)) PackageFlagErr flag reasons -> flag_err (pprFlag flag) reasons TrustFlagErr flag reasons -> flag_err (pprTrustFlag flag) reasons where flag_err flag_doc reasons = text "cannot satisfy " <> flag_doc <> (if null reasons then Outputable.empty else text ": ") $$ nest 4 (vcat (map ppr_reason reasons) $$ text "(use -v for more information)") ppr_reason (p, reason) = pprReason (ppr (unitId p) <+> text "is") reason -- | Return this list of requirement interfaces that need to be merged -- to form @mod_name@, or @[]@ if this is not a requirement. requirementMerges :: UnitState -> ModuleName -> [InstantiatedModule] requirementMerges pkgstate mod_name = fromMaybe [] (lookupUniqMap (requirementContext pkgstate) mod_name) -- ----------------------------------------------------------------------------- -- | Pretty-print a UnitId for the user. -- -- Cabal packages may contain several components (programs, libraries, etc.). -- As far as GHC is concerned, installed package components ("units") are -- identified by an opaque UnitId string provided by Cabal. As the string -- contains a hash, we don't want to display it to users so GHC queries the -- database to retrieve some infos about the original source package (name, -- version, component name). -- -- Instead we want to display: packagename-version[:componentname] -- -- Component name is only displayed if it isn't the default library -- -- To do this we need to query a unit database. pprUnitIdForUser :: UnitState -> UnitId -> SDoc pprUnitIdForUser state uid@(UnitId fs) = case lookupUnitPprInfo state uid of Nothing -> ftext fs -- we didn't find the unit at all Just i -> ppr i pprUnitInfoForUser :: UnitInfo -> SDoc pprUnitInfoForUser info = ppr (mkUnitPprInfo unitIdFS info) lookupUnitPprInfo :: UnitState -> UnitId -> Maybe UnitPprInfo lookupUnitPprInfo state uid = fmap (mkUnitPprInfo unitIdFS) (lookupUnitId state uid) -- ----------------------------------------------------------------------------- -- Displaying packages -- | Show (very verbose) package info pprUnits :: UnitState -> SDoc pprUnits = pprUnitsWith pprUnitInfo pprUnitsWith :: (UnitInfo -> SDoc) -> UnitState -> SDoc pprUnitsWith pprIPI pkgstate = vcat (intersperse (text "---") (map pprIPI (listUnitInfo pkgstate))) -- | Show simplified unit info. -- -- The idea is to only print package id, and any information that might -- be different from the package databases (exposure, trust) pprUnitsSimple :: UnitState -> SDoc pprUnitsSimple = pprUnitsWith pprIPI where pprIPI ipi = let i = unitIdFS (unitId ipi) e = if unitIsExposed ipi then text "E" else text " " t = if unitIsTrusted ipi then text "T" else text " " in e <> t <> text " " <> ftext i -- | Show the mapping of modules to where they come from. pprModuleMap :: ModuleNameProvidersMap -> SDoc pprModuleMap mod_map = vcat (map pprLine (nonDetUniqMapToList mod_map)) where pprLine (m,e) = ppr m $$ nest 50 (vcat (map (pprEntry m) (nonDetUniqMapToList e))) pprEntry :: Outputable a => ModuleName -> (Module, a) -> SDoc pprEntry m (m',o) | m == moduleName m' = ppr (moduleUnit m') <+> parens (ppr o) | otherwise = ppr m' <+> parens (ppr o) fsPackageName :: UnitInfo -> FastString fsPackageName info = fs where PackageName fs = unitPackageName info -- | Given a fully instantiated 'InstantiatedUnit', improve it into a -- 'RealUnit' if we can find it in the package database. improveUnit :: UnitState -> Unit -> Unit improveUnit state u = improveUnit' (unitInfoMap state) (preloadClosure state) u -- | Given a fully instantiated 'InstantiatedUnit', improve it into a -- 'RealUnit' if we can find it in the package database. improveUnit' :: UnitInfoMap -> PreloadUnitClosure -> Unit -> Unit improveUnit' _ _ uid@(RealUnit _) = uid -- short circuit improveUnit' pkg_map closure uid = -- Do NOT lookup indefinite ones, they won't be useful! case lookupUnit' False pkg_map closure uid of Nothing -> uid Just pkg -> -- Do NOT improve if the indefinite unit id is not -- part of the closure unique set. See -- Note [VirtUnit to RealUnit improvement] if unitId pkg `elementOfUniqSet` closure then mkUnit pkg else uid -- | Check the database to see if we already have an installed unit that -- corresponds to the given 'InstantiatedUnit'. -- -- Return a `UnitId` which either wraps the `InstantiatedUnit` unchanged or -- references a matching installed unit. -- -- See Note [VirtUnit to RealUnit improvement] instUnitToUnit :: UnitState -> InstantiatedUnit -> Unit instUnitToUnit state iuid = -- NB: suppose that we want to compare the instantiated -- unit p[H=impl:H] against p+abcd (where p+abcd -- happens to be the existing, installed version of -- p[H=impl:H]. If we *only* wrap in p[H=impl:H] -- VirtUnit, they won't compare equal; only -- after improvement will the equality hold. improveUnit state $ VirtUnit iuid -- | Substitution on module variables, mapping module names to module -- identifiers. type ShHoleSubst = ModuleNameEnv Module -- | Substitutes holes in a 'Module'. NOT suitable for being called -- directly on a 'nameModule', see Note [Representation of module/name variables]. -- @p[A=\]:B@ maps to @p[A=q():A]:B@ with @A=q():A@; -- similarly, @\@ maps to @q():A@. renameHoleModule :: UnitState -> ShHoleSubst -> Module -> Module renameHoleModule state = renameHoleModule' (unitInfoMap state) (preloadClosure state) -- | Substitutes holes in a 'Unit', suitable for renaming when -- an include occurs; see Note [Representation of module/name variables]. -- -- @p[A=\]@ maps to @p[A=\]@ with @A=\@. renameHoleUnit :: UnitState -> ShHoleSubst -> Unit -> Unit renameHoleUnit state = renameHoleUnit' (unitInfoMap state) (preloadClosure state) -- | Like 'renameHoleModule', but requires only 'ClosureUnitInfoMap' -- so it can be used by "GHC.Unit.State". renameHoleModule' :: UnitInfoMap -> PreloadUnitClosure -> ShHoleSubst -> Module -> Module renameHoleModule' pkg_map closure env m | not (isHoleModule m) = let uid = renameHoleUnit' pkg_map closure env (moduleUnit m) in mkModule uid (moduleName m) | Just m' <- lookupUFM env (moduleName m) = m' -- NB m = , that's what's in scope. | otherwise = m -- | Like 'renameHoleUnit, but requires only 'ClosureUnitInfoMap' -- so it can be used by "GHC.Unit.State". renameHoleUnit' :: UnitInfoMap -> PreloadUnitClosure -> ShHoleSubst -> Unit -> Unit renameHoleUnit' pkg_map closure env uid = case uid of (VirtUnit InstantiatedUnit{ instUnitInstanceOf = cid , instUnitInsts = insts , instUnitHoles = fh }) -> if isNullUFM (intersectUFM_C const (udfmToUfm (getUniqDSet fh)) env) then uid -- Functorially apply the substitution to the instantiation, -- then check the 'ClosureUnitInfoMap' to see if there is -- a compiled version of this 'InstantiatedUnit' we can improve to. -- See Note [VirtUnit to RealUnit improvement] else improveUnit' pkg_map closure $ mkVirtUnit cid (map (\(k,v) -> (k, renameHoleModule' pkg_map closure env v)) insts) _ -> uid -- | Injects an 'InstantiatedModule' to 'Module' (see also -- 'instUnitToUnit'. instModuleToModule :: UnitState -> InstantiatedModule -> Module instModuleToModule pkgstate (Module iuid mod_name) = mkModule (instUnitToUnit pkgstate iuid) mod_name -- | Print unit-ids with UnitInfo found in the given UnitState pprWithUnitState :: UnitState -> SDoc -> SDoc pprWithUnitState state = updSDocContext (\ctx -> ctx { sdocUnitIdForUser = \fs -> pprUnitIdForUser state (UnitId fs) }) -- | Add package dependencies on the wired-in packages we use implicitPackageDeps :: DynFlags -> [UnitId] implicitPackageDeps dflags = [thUnitId | xopt TemplateHaskellQuotes dflags] -- TODO: Should also include `base` and `ghc-prim` if we use those implicitly, but -- it is possible to not depend on base (for example, see `ghc-prim`)