{- (c) The GRASP Project, Glasgow University, 1994-1998 Wired-in knowledge about {\em non-primitive} types -} {-# LANGUAGE OverloadedStrings #-} {-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-} -- | This module is about types that can be defined in Haskell, but which -- must be wired into the compiler nonetheless. C.f module "GHC.Builtin.Types.Prim" module GHC.Builtin.Types ( -- * Helper functions defined here mkWiredInTyConName, -- This is used in GHC.Builtin.Types.Literals to define the -- built-in functions for evaluation. mkWiredInIdName, -- used in GHC.Types.Id.Make -- * All wired in things wiredInTyCons, isBuiltInOcc_maybe, -- * Bool boolTy, boolTyCon, boolTyCon_RDR, boolTyConName, trueDataCon, trueDataConId, true_RDR, falseDataCon, falseDataConId, false_RDR, promotedFalseDataCon, promotedTrueDataCon, -- * Ordering orderingTyCon, ordLTDataCon, ordLTDataConId, ordEQDataCon, ordEQDataConId, ordGTDataCon, ordGTDataConId, promotedLTDataCon, promotedEQDataCon, promotedGTDataCon, -- * Boxing primitive types boxingDataCon_maybe, -- * Char charTyCon, charDataCon, charTyCon_RDR, charTy, stringTy, charTyConName, stringTyCon_RDR, -- * Double doubleTyCon, doubleDataCon, doubleTy, doubleTyConName, -- * Float floatTyCon, floatDataCon, floatTy, floatTyConName, -- * Int intTyCon, intDataCon, intTyCon_RDR, intDataCon_RDR, intTyConName, intTy, -- * Word wordTyCon, wordDataCon, wordTyConName, wordTy, -- * Word8 word8TyCon, word8DataCon, word8Ty, -- * List listTyCon, listTyCon_RDR, listTyConName, listTyConKey, nilDataCon, nilDataConName, nilDataConKey, consDataCon_RDR, consDataCon, consDataConName, promotedNilDataCon, promotedConsDataCon, mkListTy, mkPromotedListTy, -- * NonEmpty nonEmptyTyCon, nonEmptyTyConName, nonEmptyDataCon, nonEmptyDataConName, -- * Maybe maybeTyCon, maybeTyConName, nothingDataCon, nothingDataConName, promotedNothingDataCon, justDataCon, justDataConName, promotedJustDataCon, mkPromotedMaybeTy, mkMaybeTy, isPromotedMaybeTy, -- * Tuples mkTupleTy, mkTupleTy1, mkBoxedTupleTy, mkTupleStr, tupleTyCon, tupleDataCon, tupleTyConName, tupleDataConName, promotedTupleDataCon, unitTyCon, unitDataCon, unitDataConId, unitTy, unitTyConKey, soloTyCon, pairTyCon, mkPromotedPairTy, isPromotedPairType, unboxedUnitTy, unboxedUnitTyCon, unboxedUnitDataCon, unboxedTupleKind, unboxedSumKind, filterCTuple, -- ** Constraint tuples cTupleTyCon, cTupleTyConName, cTupleTyConNames, isCTupleTyConName, cTupleTyConNameArity_maybe, cTupleDataCon, cTupleDataConName, cTupleDataConNames, cTupleSelId, cTupleSelIdName, -- * Any anyTyCon, anyTy, anyTypeOfKind, -- * Recovery TyCon makeRecoveryTyCon, -- * Sums mkSumTy, sumTyCon, sumDataCon, -- * Kinds typeSymbolKindCon, typeSymbolKind, isLiftedTypeKindTyConName, typeToTypeKind, liftedRepTyCon, unliftedRepTyCon, constraintKind, liftedTypeKind, unliftedTypeKind, zeroBitTypeKind, constraintKindTyCon, liftedTypeKindTyCon, unliftedTypeKindTyCon, constraintKindTyConName, liftedTypeKindTyConName, unliftedTypeKindTyConName, liftedRepTyConName, unliftedRepTyConName, -- * Equality predicates heqTyCon, heqTyConName, heqClass, heqDataCon, eqTyCon, eqTyConName, eqClass, eqDataCon, eqTyCon_RDR, coercibleTyCon, coercibleTyConName, coercibleDataCon, coercibleClass, -- * RuntimeRep and friends runtimeRepTyCon, levityTyCon, vecCountTyCon, vecElemTyCon, boxedRepDataConTyCon, runtimeRepTy, levityTy, liftedRepTy, unliftedRepTy, zeroBitRepTy, vecRepDataConTyCon, tupleRepDataConTyCon, sumRepDataConTyCon, liftedDataConTyCon, unliftedDataConTyCon, liftedDataConTy, unliftedDataConTy, intRepDataConTy, int8RepDataConTy, int16RepDataConTy, int32RepDataConTy, int64RepDataConTy, wordRepDataConTy, word8RepDataConTy, word16RepDataConTy, word32RepDataConTy, word64RepDataConTy, addrRepDataConTy, floatRepDataConTy, doubleRepDataConTy, vec2DataConTy, vec4DataConTy, vec8DataConTy, vec16DataConTy, vec32DataConTy, vec64DataConTy, int8ElemRepDataConTy, int16ElemRepDataConTy, int32ElemRepDataConTy, int64ElemRepDataConTy, word8ElemRepDataConTy, word16ElemRepDataConTy, word32ElemRepDataConTy, word64ElemRepDataConTy, floatElemRepDataConTy, doubleElemRepDataConTy, -- * Multiplicity and friends multiplicityTyConName, oneDataConName, manyDataConName, multiplicityTy, multiplicityTyCon, oneDataCon, manyDataCon, oneDataConTy, manyDataConTy, oneDataConTyCon, manyDataConTyCon, multMulTyCon, unrestrictedFunTyCon, unrestrictedFunTyConName, -- * Bignum integerTy, integerTyCon, integerTyConName, integerISDataCon, integerISDataConName, integerIPDataCon, integerIPDataConName, integerINDataCon, integerINDataConName, naturalTy, naturalTyCon, naturalTyConName, naturalNSDataCon, naturalNSDataConName, naturalNBDataCon, naturalNBDataConName ) where import GHC.Prelude import {-# SOURCE #-} GHC.Types.Id.Make ( mkDataConWorkId, mkDictSelId ) -- friends: import GHC.Builtin.Names import GHC.Builtin.Types.Prim import GHC.Builtin.Uniques -- others: import GHC.Core.Coercion.Axiom import GHC.Types.Id import GHC.Types.TyThing import GHC.Types.SourceText import GHC.Types.Var (VarBndr (Bndr)) import GHC.Settings.Constants ( mAX_TUPLE_SIZE, mAX_CTUPLE_SIZE, mAX_SUM_SIZE ) import GHC.Unit.Module ( Module ) import GHC.Core.Type import qualified GHC.Core.TyCo.Rep as TyCoRep (Type(TyConApp)) import GHC.Types.RepType import GHC.Core.DataCon import GHC.Core.ConLike import GHC.Core.TyCon import GHC.Core.Class ( Class, mkClass ) import GHC.Types.Name.Reader import GHC.Types.Name as Name import GHC.Types.Name.Env ( NameEnv, mkNameEnv, lookupNameEnv, lookupNameEnv_NF ) import GHC.Types.Basic import GHC.Types.ForeignCall import GHC.Types.Unique.Set import Data.Array import GHC.Data.FastString import GHC.Data.BooleanFormula ( mkAnd ) import GHC.Utils.Outputable import GHC.Utils.Misc import GHC.Utils.Panic import GHC.Utils.Panic.Plain import qualified Data.ByteString.Char8 as BS import Data.List ( elemIndex, intersperse ) alpha_tyvar :: [TyVar] alpha_tyvar = [alphaTyVar] alpha_ty :: [Type] alpha_ty = [alphaTy] {- Note [Wired-in Types and Type Constructors] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This module include a lot of wired-in types and type constructors. Here, these are presented in a tabular format to make it easier to find the wired-in type identifier corresponding to a known Haskell type. Data constructors are nested under their corresponding types with two spaces of indentation. Identifier Type Haskell name Notes ---------------------------------------------------------------------------- liftedTypeKindTyCon TyCon GHC.Types.Type Synonym for: TYPE LiftedRep unliftedTypeKindTyCon TyCon GHC.Types.Type Synonym for: TYPE UnliftedRep liftedRepTyCon TyCon GHC.Types.LiftedRep Synonym for: 'BoxedRep 'Lifted unliftedRepTyCon TyCon GHC.Types.LiftedRep Synonym for: 'BoxedRep 'Unlifted levityTyCon TyCon GHC.Types.Levity Data type liftedDataConTyCon TyCon GHC.Types.Lifted Data constructor unliftedDataConTyCon TyCon GHC.Types.Unlifted Data constructor vecCountTyCon TyCon GHC.Types.VecCount Data type vec2DataConTy Type GHC.Types.Vec2 Data constructor vec4DataConTy Type GHC.Types.Vec4 Data constructor vec8DataConTy Type GHC.Types.Vec8 Data constructor vec16DataConTy Type GHC.Types.Vec16 Data constructor vec32DataConTy Type GHC.Types.Vec32 Data constructor vec64DataConTy Type GHC.Types.Vec64 Data constructor runtimeRepTyCon TyCon GHC.Types.RuntimeRep Data type boxedRepDataConTyCon TyCon GHC.Types.BoxedRep Data constructor intRepDataConTy Type GHC.Types.IntRep Data constructor doubleRepDataConTy Type GHC.Types.DoubleRep Data constructor floatRepDataConTy Type GHC.Types.FloatRep Data constructor boolTyCon TyCon GHC.Types.Bool Data type trueDataCon DataCon GHC.Types.True Data constructor falseDataCon DataCon GHC.Types.False Data constructor promotedTrueDataCon TyCon GHC.Types.True Data constructor promotedFalseDataCon TyCon GHC.Types.False Data constructor ************************************************************************ * * \subsection{Wired in type constructors} * * ************************************************************************ If you change which things are wired in, make sure you change their names in GHC.Builtin.Names, so they use wTcQual, wDataQual, etc -} -- This list is used only to define GHC.Builtin.Utils.wiredInThings. That in turn -- is used to initialise the name environment carried around by the renamer. -- This means that if we look up the name of a TyCon (or its implicit binders) -- that occurs in this list that name will be assigned the wired-in key we -- define here. -- -- Because of their infinite nature, this list excludes -- * tuples, including boxed, unboxed and constraint tuples --- (mkTupleTyCon, unitTyCon, pairTyCon) -- * unboxed sums (sumTyCon) -- See Note [Infinite families of known-key names] in GHC.Builtin.Names -- -- See also Note [Known-key names] wiredInTyCons :: [TyCon] wiredInTyCons = [ -- Units are not treated like other tuples, because they -- are defined in GHC.Base, and there's only a few of them. We -- put them in wiredInTyCons so that they will pre-populate -- the name cache, so the parser in isBuiltInOcc_maybe doesn't -- need to look out for them. unitTyCon , unboxedUnitTyCon -- Solo (i.e., the bosed 1-tuple) is also not treated -- like other tuples (i.e. we /do/ include it here), -- since it does not use special syntax like other tuples -- See Note [One-tuples] (Wrinkle: Make boxed one-tuple names -- have known keys) in GHC.Builtin.Types. , soloTyCon , anyTyCon , boolTyCon , charTyCon , stringTyCon , doubleTyCon , floatTyCon , intTyCon , wordTyCon , listTyCon , orderingTyCon , maybeTyCon , heqTyCon , eqTyCon , coercibleTyCon , typeSymbolKindCon , runtimeRepTyCon , levityTyCon , vecCountTyCon , vecElemTyCon , constraintKindTyCon , liftedTypeKindTyCon , unliftedTypeKindTyCon , multiplicityTyCon , naturalTyCon , integerTyCon , liftedRepTyCon , unliftedRepTyCon , zeroBitRepTyCon , zeroBitTypeTyCon , nonEmptyTyCon ] mkWiredInTyConName :: BuiltInSyntax -> Module -> FastString -> Unique -> TyCon -> Name mkWiredInTyConName built_in modu fs unique tycon = mkWiredInName modu (mkTcOccFS fs) unique (ATyCon tycon) -- Relevant TyCon built_in mkWiredInDataConName :: BuiltInSyntax -> Module -> FastString -> Unique -> DataCon -> Name mkWiredInDataConName built_in modu fs unique datacon = mkWiredInName modu (mkDataOccFS fs) unique (AConLike (RealDataCon datacon)) -- Relevant DataCon built_in mkWiredInIdName :: Module -> FastString -> Unique -> Id -> Name mkWiredInIdName mod fs uniq id = mkWiredInName mod (mkOccNameFS Name.varName fs) uniq (AnId id) UserSyntax -- See Note [Kind-changing of (~) and Coercible] -- in libraries/ghc-prim/GHC/Types.hs eqTyConName, eqDataConName, eqSCSelIdName :: Name eqTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "~") eqTyConKey eqTyCon eqDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "Eq#") eqDataConKey eqDataCon eqSCSelIdName = mkWiredInIdName gHC_TYPES (fsLit "eq_sel") eqSCSelIdKey eqSCSelId eqTyCon_RDR :: RdrName eqTyCon_RDR = nameRdrName eqTyConName -- See Note [Kind-changing of (~) and Coercible] -- in libraries/ghc-prim/GHC/Types.hs heqTyConName, heqDataConName, heqSCSelIdName :: Name heqTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "~~") heqTyConKey heqTyCon heqDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "HEq#") heqDataConKey heqDataCon heqSCSelIdName = mkWiredInIdName gHC_TYPES (fsLit "heq_sel") heqSCSelIdKey heqSCSelId -- See Note [Kind-changing of (~) and Coercible] in libraries/ghc-prim/GHC/Types.hs coercibleTyConName, coercibleDataConName, coercibleSCSelIdName :: Name coercibleTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Coercible") coercibleTyConKey coercibleTyCon coercibleDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "MkCoercible") coercibleDataConKey coercibleDataCon coercibleSCSelIdName = mkWiredInIdName gHC_TYPES (fsLit "coercible_sel") coercibleSCSelIdKey coercibleSCSelId charTyConName, charDataConName, intTyConName, intDataConName, stringTyConName :: Name charTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Char") charTyConKey charTyCon charDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "C#") charDataConKey charDataCon stringTyConName = mkWiredInTyConName UserSyntax gHC_BASE (fsLit "String") stringTyConKey stringTyCon intTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Int") intTyConKey intTyCon intDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "I#") intDataConKey intDataCon boolTyConName, falseDataConName, trueDataConName :: Name boolTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Bool") boolTyConKey boolTyCon falseDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "False") falseDataConKey falseDataCon trueDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "True") trueDataConKey trueDataCon listTyConName, nilDataConName, consDataConName :: Name listTyConName = mkWiredInTyConName BuiltInSyntax gHC_TYPES (fsLit "[]") listTyConKey listTyCon nilDataConName = mkWiredInDataConName BuiltInSyntax gHC_TYPES (fsLit "[]") nilDataConKey nilDataCon consDataConName = mkWiredInDataConName BuiltInSyntax gHC_TYPES (fsLit ":") consDataConKey consDataCon nonEmptyTyConName, nonEmptyDataConName :: Name nonEmptyTyConName = mkWiredInTyConName UserSyntax gHC_BASE (fsLit "NonEmpty") nonEmptyTyConKey nonEmptyTyCon nonEmptyDataConName = mkWiredInDataConName UserSyntax gHC_BASE (fsLit ":|") nonEmptyDataConKey nonEmptyDataCon maybeTyConName, nothingDataConName, justDataConName :: Name maybeTyConName = mkWiredInTyConName UserSyntax gHC_MAYBE (fsLit "Maybe") maybeTyConKey maybeTyCon nothingDataConName = mkWiredInDataConName UserSyntax gHC_MAYBE (fsLit "Nothing") nothingDataConKey nothingDataCon justDataConName = mkWiredInDataConName UserSyntax gHC_MAYBE (fsLit "Just") justDataConKey justDataCon wordTyConName, wordDataConName, word8DataConName :: Name wordTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Word") wordTyConKey wordTyCon wordDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "W#") wordDataConKey wordDataCon word8DataConName = mkWiredInDataConName UserSyntax gHC_WORD (fsLit "W8#") word8DataConKey word8DataCon floatTyConName, floatDataConName, doubleTyConName, doubleDataConName :: Name floatTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Float") floatTyConKey floatTyCon floatDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "F#") floatDataConKey floatDataCon doubleTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Double") doubleTyConKey doubleTyCon doubleDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "D#") doubleDataConKey doubleDataCon -- Any {- Note [Any types] ~~~~~~~~~~~~~~~~ The type constructor Any, type family Any :: k where { } It has these properties: * Note that 'Any' is kind polymorphic since in some program we may need to use Any to fill in a type variable of some kind other than * (see #959 for examples). Its kind is thus `forall k. k``. * It is defined in module GHC.Types, and exported so that it is available to users. For this reason it's treated like any other wired-in type: - has a fixed unique, anyTyConKey, - lives in the global name cache * It is a *closed* type family, with no instances. This means that if ty :: '(k1, k2) we add a given coercion g :: ty ~ (Fst ty, Snd ty) If Any was a *data* type, then we'd get inconsistency because 'ty' could be (Any '(k1,k2)) and then we'd have an equality with Any on one side and '(,) on the other. See also #9097 and #9636. * When instantiated at a lifted type it is inhabited by at least one value, namely bottom * You can safely coerce any /lifted/ type to Any, and back with unsafeCoerce. * It does not claim to be a *data* type, and that's important for the code generator, because the code gen may *enter* a data value but never enters a function value. * It is wired-in so we can easily refer to it where we don't have a name environment (e.g. see Rules.matchRule for one example) It's used to instantiate un-constrained type variables after type checking. For example, 'length' has type length :: forall a. [a] -> Int and the list datacon for the empty list has type [] :: forall a. [a] In order to compose these two terms as @length []@ a type application is required, but there is no constraint on the choice. In this situation GHC uses 'Any', > length (Any *) ([] (Any *)) Above, we print kinds explicitly, as if with --fprint-explicit-kinds. The Any tycon used to be quite magic, but we have since been able to implement it merely with an empty kind polymorphic type family. See #10886 for a bit of history. -} anyTyConName :: Name anyTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Any") anyTyConKey anyTyCon anyTyCon :: TyCon anyTyCon = mkFamilyTyCon anyTyConName binders res_kind Nothing (ClosedSynFamilyTyCon Nothing) Nothing NotInjective where binders@[kv] = mkTemplateKindTyConBinders [liftedTypeKind] res_kind = mkTyVarTy (binderVar kv) anyTy :: Type anyTy = mkTyConTy anyTyCon anyTypeOfKind :: Kind -> Type anyTypeOfKind kind = mkTyConApp anyTyCon [kind] -- | Make a fake, recovery 'TyCon' from an existing one. -- Used when recovering from errors in type declarations makeRecoveryTyCon :: TyCon -> TyCon makeRecoveryTyCon tc = mkTcTyCon (tyConName tc) bndrs res_kind noTcTyConScopedTyVars True -- Fully generalised flavour -- Keep old flavour where flavour = tyConFlavour tc [kv] = mkTemplateKindVars [liftedTypeKind] (bndrs, res_kind) = case flavour of PromotedDataConFlavour -> ([mkNamedTyConBinder Inferred kv], mkTyVarTy kv) _ -> (tyConBinders tc, tyConResKind tc) -- For data types we have already validated their kind, so it -- makes sense to keep it. For promoted data constructors we haven't, -- so we recover with kind (forall k. k). Otherwise consider -- data T a where { MkT :: Show a => T a } -- If T is for some reason invalid, we don't want to fall over -- at (promoted) use-sites of MkT. -- Kinds typeSymbolKindConName :: Name typeSymbolKindConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Symbol") typeSymbolKindConNameKey typeSymbolKindCon constraintKindTyConName :: Name constraintKindTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Constraint") constraintKindTyConKey constraintKindTyCon liftedTypeKindTyConName, unliftedTypeKindTyConName, zeroBitTypeTyConName :: Name liftedTypeKindTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Type") liftedTypeKindTyConKey liftedTypeKindTyCon unliftedTypeKindTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "UnliftedType") unliftedTypeKindTyConKey unliftedTypeKindTyCon zeroBitTypeTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "ZeroBitType") zeroBitTypeTyConKey zeroBitTypeTyCon liftedRepTyConName, unliftedRepTyConName, zeroBitRepTyConName :: Name liftedRepTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "LiftedRep") liftedRepTyConKey liftedRepTyCon unliftedRepTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "UnliftedRep") unliftedRepTyConKey unliftedRepTyCon zeroBitRepTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "ZeroBitRep") zeroBitRepTyConKey zeroBitRepTyCon multiplicityTyConName :: Name multiplicityTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Multiplicity") multiplicityTyConKey multiplicityTyCon oneDataConName, manyDataConName :: Name oneDataConName = mkWiredInDataConName BuiltInSyntax gHC_TYPES (fsLit "One") oneDataConKey oneDataCon manyDataConName = mkWiredInDataConName BuiltInSyntax gHC_TYPES (fsLit "Many") manyDataConKey manyDataCon -- It feels wrong to have One and Many be BuiltInSyntax. But otherwise, -- `Many`, in particular, is considered out of scope unless an appropriate -- file is open. The problem with this is that `Many` appears implicitly in -- types every time there is an `(->)`, hence out-of-scope errors get -- reported. Making them built-in make it so that they are always considered in -- scope. runtimeRepTyConName, vecRepDataConName, tupleRepDataConName, sumRepDataConName, boxedRepDataConName :: Name runtimeRepTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "RuntimeRep") runtimeRepTyConKey runtimeRepTyCon vecRepDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "VecRep") vecRepDataConKey vecRepDataCon tupleRepDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "TupleRep") tupleRepDataConKey tupleRepDataCon sumRepDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "SumRep") sumRepDataConKey sumRepDataCon boxedRepDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "BoxedRep") boxedRepDataConKey boxedRepDataCon levityTyConName, liftedDataConName, unliftedDataConName :: Name levityTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Levity") levityTyConKey levityTyCon liftedDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "Lifted") liftedDataConKey liftedDataCon unliftedDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "Unlifted") unliftedDataConKey unliftedDataCon -- See Note [Wiring in RuntimeRep] runtimeRepSimpleDataConNames :: [Name] runtimeRepSimpleDataConNames = zipWith3Lazy mk_special_dc_name [ fsLit "IntRep" , fsLit "Int8Rep", fsLit "Int16Rep", fsLit "Int32Rep", fsLit "Int64Rep" , fsLit "WordRep" , fsLit "Word8Rep", fsLit "Word16Rep", fsLit "Word32Rep", fsLit "Word64Rep" , fsLit "AddrRep" , fsLit "FloatRep", fsLit "DoubleRep" ] runtimeRepSimpleDataConKeys runtimeRepSimpleDataCons vecCountTyConName :: Name vecCountTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "VecCount") vecCountTyConKey vecCountTyCon -- See Note [Wiring in RuntimeRep] vecCountDataConNames :: [Name] vecCountDataConNames = zipWith3Lazy mk_special_dc_name [ fsLit "Vec2", fsLit "Vec4", fsLit "Vec8" , fsLit "Vec16", fsLit "Vec32", fsLit "Vec64" ] vecCountDataConKeys vecCountDataCons vecElemTyConName :: Name vecElemTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "VecElem") vecElemTyConKey vecElemTyCon -- See Note [Wiring in RuntimeRep] vecElemDataConNames :: [Name] vecElemDataConNames = zipWith3Lazy mk_special_dc_name [ fsLit "Int8ElemRep", fsLit "Int16ElemRep", fsLit "Int32ElemRep" , fsLit "Int64ElemRep", fsLit "Word8ElemRep", fsLit "Word16ElemRep" , fsLit "Word32ElemRep", fsLit "Word64ElemRep" , fsLit "FloatElemRep", fsLit "DoubleElemRep" ] vecElemDataConKeys vecElemDataCons mk_special_dc_name :: FastString -> Unique -> DataCon -> Name mk_special_dc_name fs u dc = mkWiredInDataConName UserSyntax gHC_TYPES fs u dc boolTyCon_RDR, false_RDR, true_RDR, intTyCon_RDR, charTyCon_RDR, stringTyCon_RDR, intDataCon_RDR, listTyCon_RDR, consDataCon_RDR :: RdrName boolTyCon_RDR = nameRdrName boolTyConName false_RDR = nameRdrName falseDataConName true_RDR = nameRdrName trueDataConName intTyCon_RDR = nameRdrName intTyConName charTyCon_RDR = nameRdrName charTyConName stringTyCon_RDR = nameRdrName stringTyConName intDataCon_RDR = nameRdrName intDataConName listTyCon_RDR = nameRdrName listTyConName consDataCon_RDR = nameRdrName consDataConName {- ************************************************************************ * * \subsection{mkWiredInTyCon} * * ************************************************************************ -} -- This function assumes that the types it creates have all parameters at -- Representational role, and that there is no kind polymorphism. pcTyCon :: Name -> Maybe CType -> [TyVar] -> [DataCon] -> TyCon pcTyCon name cType tyvars cons = mkAlgTyCon name (mkAnonTyConBinders VisArg tyvars) liftedTypeKind (map (const Representational) tyvars) cType [] -- No stupid theta (mkDataTyConRhs cons) (VanillaAlgTyCon (mkPrelTyConRepName name)) False -- Not in GADT syntax pcDataCon :: Name -> [TyVar] -> [Type] -> TyCon -> DataCon pcDataCon n univs tys = pcDataConW n univs (map linear tys) pcDataConW :: Name -> [TyVar] -> [Scaled Type] -> TyCon -> DataCon pcDataConW n univs tys = pcDataConWithFixity False n univs [] -- no ex_tvs univs -- the univs are precisely the user-written tyvars tys pcDataConWithFixity :: Bool -- ^ declared infix? -> Name -- ^ datacon name -> [TyVar] -- ^ univ tyvars -> [TyCoVar] -- ^ ex tycovars -> [TyCoVar] -- ^ user-written tycovars -> [Scaled Type] -- ^ args -> TyCon -> DataCon pcDataConWithFixity infx n = pcDataConWithFixity' infx n (dataConWorkerUnique (nameUnique n)) NoRRI -- The Name's unique is the first of two free uniques; -- the first is used for the datacon itself, -- the second is used for the "worker name" -- -- To support this the mkPreludeDataConUnique function "allocates" -- one DataCon unique per pair of Ints. pcDataConWithFixity' :: Bool -> Name -> Unique -> RuntimeRepInfo -> [TyVar] -> [TyCoVar] -> [TyCoVar] -> [Scaled Type] -> TyCon -> DataCon -- The Name should be in the DataName name space; it's the name -- of the DataCon itself. -- -- IMPORTANT NOTE: -- if you try to wire-in a /GADT/ data constructor you will -- find it hard (we did). You will need wrapper and worker -- Names, a DataConBoxer, DataConRep, EqSpec, etc. -- Try hard not to wire-in GADT data types. You will live -- to regret doing so (we do). pcDataConWithFixity' declared_infix dc_name wrk_key rri tyvars ex_tyvars user_tyvars arg_tys tycon = data_con where tag_map = mkTyConTagMap tycon -- This constructs the constructor Name to ConTag map once per -- constructor, which is quadratic. It's OK here, because it's -- only called for wired in data types that don't have a lot of -- constructors. It's also likely that GHC will lift tag_map, since -- we call pcDataConWithFixity' with static TyCons in the same module. -- See Note [Constructor tag allocation] and #14657 data_con = mkDataCon dc_name declared_infix prom_info (map (const no_bang) arg_tys) [] -- No labelled fields tyvars ex_tyvars (mkTyVarBinders SpecifiedSpec user_tyvars) [] -- No equality spec [] -- No theta arg_tys (mkTyConApp tycon (mkTyVarTys tyvars)) rri tycon (lookupNameEnv_NF tag_map dc_name) [] -- No stupid theta (mkDataConWorkId wrk_name data_con) NoDataConRep -- Wired-in types are too simple to need wrappers no_bang = HsSrcBang NoSourceText NoSrcUnpack NoSrcStrict wrk_name = mkDataConWorkerName data_con wrk_key prom_info = mkPrelTyConRepName dc_name mkDataConWorkerName :: DataCon -> Unique -> Name mkDataConWorkerName data_con wrk_key = mkWiredInName modu wrk_occ wrk_key (AnId (dataConWorkId data_con)) UserSyntax where modu = assert (isExternalName dc_name) $ nameModule dc_name dc_name = dataConName data_con dc_occ = nameOccName dc_name wrk_occ = mkDataConWorkerOcc dc_occ -- used for RuntimeRep and friends pcSpecialDataCon :: Name -> [Type] -> TyCon -> RuntimeRepInfo -> DataCon pcSpecialDataCon dc_name arg_tys tycon rri = pcDataConWithFixity' False dc_name (dataConWorkerUnique (nameUnique dc_name)) rri [] [] [] (map linear arg_tys) tycon {- ************************************************************************ * * Kinds * * ************************************************************************ -} typeSymbolKindCon :: TyCon -- data Symbol typeSymbolKindCon = pcTyCon typeSymbolKindConName Nothing [] [] typeSymbolKind :: Kind typeSymbolKind = mkTyConTy typeSymbolKindCon constraintKindTyCon :: TyCon -- 'TyCon.isConstraintKindCon' assumes that this is an AlgTyCon! constraintKindTyCon = pcTyCon constraintKindTyConName Nothing [] [] typeToTypeKind, constraintKind :: Kind typeToTypeKind = liftedTypeKind `mkVisFunTyMany` liftedTypeKind constraintKind = mkTyConTy constraintKindTyCon {- ************************************************************************ * * Stuff for dealing with tuples * * ************************************************************************ Note [How tuples work] ~~~~~~~~~~~~~~~~~~~~~~ * There are three families of tuple TyCons and corresponding DataCons, expressed by the type BasicTypes.TupleSort: data TupleSort = BoxedTuple | UnboxedTuple | ConstraintTuple * All three families are AlgTyCons, whose AlgTyConRhs is TupleTyCon * BoxedTuples - A wired-in type - Data type declarations in GHC.Tuple - The data constructors really have an info table * UnboxedTuples - A wired-in type - Have a pretend DataCon, defined in GHC.Prim, but no actual declaration and no info table * ConstraintTuples - A wired-in type. - Declared as classes in GHC.Classes, e.g. class (c1,c2) => (c1,c2) - Given constraints: the superclasses automatically become available - Wanted constraints: there is a built-in instance instance (c1,c2) => (c1,c2) See GHC.Tc.Instance.Class.matchCTuple - Currently just go up to 64; beyond that you have to use manual nesting - Their OccNames look like (%,,,%), so they can easily be distinguished from term tuples. But (following Haskell) we pretty-print saturated constraint tuples with round parens; see BasicTypes.tupleParens. - Unlike BoxedTuples and UnboxedTuples, which only wire in type constructors and data constructors, ConstraintTuples also wire in superclass selector functions. For instance, $p1(%,%) and $p2(%,%) are the selectors for the binary constraint tuple. * In quite a lot of places things are restricted just to BoxedTuple/UnboxedTuple, and then we used BasicTypes.Boxity to distinguish E.g. tupleTyCon has a Boxity argument * When looking up an OccName in the original-name cache (GHC.Iface.Env.lookupOrigNameCache), we spot the tuple OccName to make sure we get the right wired-in name. This guy can't tell the difference between BoxedTuple and ConstraintTuple (same OccName!), so tuples are not serialised into interface files using OccNames at all. * Serialization to interface files works via the usual mechanism for known-key things: instead of serializing the OccName we just serialize the key. During deserialization we lookup the Name associated with the unique with the logic in GHC.Builtin.Uniques. See Note [Symbol table representation of names] for details. See also Note [Known-key names] in GHC.Builtin.Names. Note [One-tuples] ~~~~~~~~~~~~~~~~~ GHC supports both boxed and unboxed one-tuples: - Unboxed one-tuples are sometimes useful when returning a single value after CPR analysis - A boxed one-tuple is used by GHC.HsToCore.Utils.mkSelectorBinds, when there is just one binder Basically it keeps everything uniform. However the /naming/ of the type/data constructors for one-tuples is a bit odd: 3-tuples: (,,) (,,)# 2-tuples: (,) (,)# 1-tuples: ?? 0-tuples: () ()# Zero-tuples have used up the logical name. So we use 'Solo' and 'Solo#' for one-tuples. So in ghc-prim:GHC.Tuple we see the declarations: data () = () data Solo a = Solo a data (a,b) = (a,b) There is no way to write a boxed one-tuple in Haskell using tuple syntax. They can, however, be written using other methods: 1. They can be written directly by importing them from GHC.Tuple. 2. They can be generated by way of Template Haskell or in `deriving` code. There is nothing special about one-tuples in Core; in particular, they have no custom pretty-printing, just using `Solo`. Note that there is *not* a unary constraint tuple, unlike for other forms of tuples. See [Ignore unary constraint tuples] in GHC.Tc.Gen.HsType for more details. See also Note [Flattening one-tuples] in GHC.Core.Make and Note [Don't flatten tuples from HsSyn] in GHC.Core.Make. ----- -- Wrinkle: Make boxed one-tuple names have known keys ----- We make boxed one-tuple names have known keys so that `data Solo a = Solo a`, defined in GHC.Tuple, will be used when one-tuples are spliced in through Template Haskell. This program (from #18097) crucially relies on this: case $( tupE [ [| "ok" |] ] ) of Solo x -> putStrLn x Unless Solo has a known key, the type of `$( tupE [ [| "ok" |] ] )` (an ExplicitTuple of length 1) will not match the type of Solo (an ordinary data constructor used in a pattern). Making Solo known-key allows GHC to make this connection. Unlike Solo, every other tuple is /not/ known-key (see Note [Infinite families of known-key names] in GHC.Builtin.Names). The main reason for this exception is that other tuples are written with special syntax, and as a result, they are renamed using a special `isBuiltInOcc_maybe` function (see Note [Built-in syntax and the OrigNameCache] in GHC.Types.Name.Cache). In contrast, Solo is just an ordinary data type with no special syntax, so it doesn't really make sense to handle it in `isBuiltInOcc_maybe`. Making Solo known-key is the next-best way to teach the internals of the compiler about it. -} -- | Built-in syntax isn't "in scope" so these OccNames map to wired-in Names -- with BuiltInSyntax. However, this should only be necessary while resolving -- names produced by Template Haskell splices since we take care to encode -- built-in syntax names specially in interface files. See -- Note [Symbol table representation of names]. -- -- Moreover, there is no need to include names of things that the user can't -- write (e.g. type representation bindings like $tc(,,,)). isBuiltInOcc_maybe :: OccName -> Maybe Name isBuiltInOcc_maybe occ = case name of "[]" -> Just $ choose_ns listTyConName nilDataConName ":" -> Just consDataConName -- function tycon "FUN" -> Just funTyConName "->" -> Just unrestrictedFunTyConName -- boxed tuple data/tycon -- We deliberately exclude Solo (the boxed 1-tuple). -- See Note [One-tuples] (Wrinkle: Make boxed one-tuple names have known keys) "()" -> Just $ tup_name Boxed 0 _ | Just rest <- "(" `BS.stripPrefix` name , (commas, rest') <- BS.span (==',') rest , ")" <- rest' -> Just $ tup_name Boxed (1+BS.length commas) -- unboxed tuple data/tycon "(##)" -> Just $ tup_name Unboxed 0 "Solo#" -> Just $ tup_name Unboxed 1 _ | Just rest <- "(#" `BS.stripPrefix` name , (commas, rest') <- BS.span (==',') rest , "#)" <- rest' -> Just $ tup_name Unboxed (1+BS.length commas) -- unboxed sum tycon _ | Just rest <- "(#" `BS.stripPrefix` name , (nb_pipes, rest') <- span_pipes rest , "#)" <- rest' -> Just $ tyConName $ sumTyCon (1+nb_pipes) -- unboxed sum datacon _ | Just rest <- "(#" `BS.stripPrefix` name , (nb_pipes1, rest') <- span_pipes rest , Just rest'' <- "_" `BS.stripPrefix` rest' , (nb_pipes2, rest''') <- span_pipes rest'' , "#)" <- rest''' -> let arity = nb_pipes1 + nb_pipes2 + 1 alt = nb_pipes1 + 1 in Just $ dataConName $ sumDataCon alt arity _ -> Nothing where name = bytesFS $ occNameFS occ span_pipes :: BS.ByteString -> (Int, BS.ByteString) span_pipes = go 0 where go nb_pipes bs = case BS.uncons bs of Just ('|',rest) -> go (nb_pipes + 1) rest Just (' ',rest) -> go nb_pipes rest _ -> (nb_pipes, bs) choose_ns :: Name -> Name -> Name choose_ns tc dc | isTcClsNameSpace ns = tc | isDataConNameSpace ns = dc | otherwise = pprPanic "tup_name" (ppr occ) where ns = occNameSpace occ tup_name boxity arity = choose_ns (getName (tupleTyCon boxity arity)) (getName (tupleDataCon boxity arity)) mkTupleOcc :: NameSpace -> Boxity -> Arity -> OccName -- No need to cache these, the caching is done in mk_tuple mkTupleOcc ns Boxed ar = mkOccName ns (mkBoxedTupleStr ar) mkTupleOcc ns Unboxed ar = mkOccName ns (mkUnboxedTupleStr ar) mkCTupleOcc :: NameSpace -> Arity -> OccName mkCTupleOcc ns ar = mkOccName ns (mkConstraintTupleStr ar) mkTupleStr :: Boxity -> Arity -> String mkTupleStr Boxed = mkBoxedTupleStr mkTupleStr Unboxed = mkUnboxedTupleStr mkBoxedTupleStr :: Arity -> String mkBoxedTupleStr 0 = "()" mkBoxedTupleStr 1 = "Solo" -- See Note [One-tuples] mkBoxedTupleStr ar = '(' : commas ar ++ ")" mkUnboxedTupleStr :: Arity -> String mkUnboxedTupleStr 0 = "(##)" mkUnboxedTupleStr 1 = "Solo#" -- See Note [One-tuples] mkUnboxedTupleStr ar = "(#" ++ commas ar ++ "#)" mkConstraintTupleStr :: Arity -> String mkConstraintTupleStr 0 = "(%%)" mkConstraintTupleStr 1 = "Solo%" -- See Note [One-tuples] mkConstraintTupleStr ar = "(%" ++ commas ar ++ "%)" commas :: Arity -> String commas ar = take (ar-1) (repeat ',') cTupleTyCon :: Arity -> TyCon cTupleTyCon i | i > mAX_CTUPLE_SIZE = fstOf3 (mk_ctuple i) -- Build one specially | otherwise = fstOf3 (cTupleArr ! i) cTupleTyConName :: Arity -> Name cTupleTyConName a = tyConName (cTupleTyCon a) cTupleTyConNames :: [Name] cTupleTyConNames = map cTupleTyConName (0 : [2..mAX_CTUPLE_SIZE]) cTupleTyConKeys :: UniqSet Unique cTupleTyConKeys = mkUniqSet $ map getUnique cTupleTyConNames isCTupleTyConName :: Name -> Bool isCTupleTyConName n = assertPpr (isExternalName n) (ppr n) $ getUnique n `elementOfUniqSet` cTupleTyConKeys -- | If the given name is that of a constraint tuple, return its arity. cTupleTyConNameArity_maybe :: Name -> Maybe Arity cTupleTyConNameArity_maybe n | not (isCTupleTyConName n) = Nothing | otherwise = fmap adjustArity (n `elemIndex` cTupleTyConNames) where -- Since `cTupleTyConNames` jumps straight from the `0` to the `2` -- case, we have to adjust accordingly our calculated arity. adjustArity a = if a > 0 then a + 1 else a cTupleDataCon :: Arity -> DataCon cTupleDataCon i | i > mAX_CTUPLE_SIZE = sndOf3 (mk_ctuple i) -- Build one specially | otherwise = sndOf3 (cTupleArr ! i) cTupleDataConName :: Arity -> Name cTupleDataConName i = dataConName (cTupleDataCon i) cTupleDataConNames :: [Name] cTupleDataConNames = map cTupleDataConName (0 : [2..mAX_CTUPLE_SIZE]) cTupleSelId :: ConTag -- Superclass position -> Arity -- Arity -> Id cTupleSelId sc_pos arity | sc_pos > arity = panic ("cTupleSelId: index out of bounds: superclass position: " ++ show sc_pos ++ " > arity " ++ show arity) | sc_pos <= 0 = panic ("cTupleSelId: Superclass positions start from 1. " ++ "(superclass position: " ++ show sc_pos ++ ", arity: " ++ show arity ++ ")") | arity < 2 = panic ("cTupleSelId: Arity starts from 2. " ++ "(superclass position: " ++ show sc_pos ++ ", arity: " ++ show arity ++ ")") | arity > mAX_CTUPLE_SIZE = thdOf3 (mk_ctuple arity) ! (sc_pos - 1) -- Build one specially | otherwise = thdOf3 (cTupleArr ! arity) ! (sc_pos - 1) cTupleSelIdName :: ConTag -- Superclass position -> Arity -- Arity -> Name cTupleSelIdName sc_pos arity = idName (cTupleSelId sc_pos arity) tupleTyCon :: Boxity -> Arity -> TyCon tupleTyCon sort i | i > mAX_TUPLE_SIZE = fst (mk_tuple sort i) -- Build one specially tupleTyCon Boxed i = fst (boxedTupleArr ! i) tupleTyCon Unboxed i = fst (unboxedTupleArr ! i) tupleTyConName :: TupleSort -> Arity -> Name tupleTyConName ConstraintTuple a = cTupleTyConName a tupleTyConName BoxedTuple a = tyConName (tupleTyCon Boxed a) tupleTyConName UnboxedTuple a = tyConName (tupleTyCon Unboxed a) promotedTupleDataCon :: Boxity -> Arity -> TyCon promotedTupleDataCon boxity i = promoteDataCon (tupleDataCon boxity i) tupleDataCon :: Boxity -> Arity -> DataCon tupleDataCon sort i | i > mAX_TUPLE_SIZE = snd (mk_tuple sort i) -- Build one specially tupleDataCon Boxed i = snd (boxedTupleArr ! i) tupleDataCon Unboxed i = snd (unboxedTupleArr ! i) tupleDataConName :: Boxity -> Arity -> Name tupleDataConName sort i = dataConName (tupleDataCon sort i) mkPromotedPairTy :: Kind -> Kind -> Type -> Type -> Type mkPromotedPairTy k1 k2 t1 t2 = mkTyConApp (promotedTupleDataCon Boxed 2) [k1,k2,t1,t2] isPromotedPairType :: Type -> Maybe (Type, Type) isPromotedPairType t | Just (tc, [_,_,x,y]) <- splitTyConApp_maybe t , tc == promotedTupleDataCon Boxed 2 = Just (x, y) | otherwise = Nothing boxedTupleArr, unboxedTupleArr :: Array Int (TyCon,DataCon) boxedTupleArr = listArray (0,mAX_TUPLE_SIZE) [mk_tuple Boxed i | i <- [0..mAX_TUPLE_SIZE]] unboxedTupleArr = listArray (0,mAX_TUPLE_SIZE) [mk_tuple Unboxed i | i <- [0..mAX_TUPLE_SIZE]] -- | Cached type constructors, data constructors, and superclass selectors for -- constraint tuples. The outer array is indexed by the arity of the constraint -- tuple and the inner array is indexed by the superclass position. cTupleArr :: Array Int (TyCon, DataCon, Array Int Id) cTupleArr = listArray (0,mAX_CTUPLE_SIZE) [mk_ctuple i | i <- [0..mAX_CTUPLE_SIZE]] -- Although GHC does not make use of unary constraint tuples -- (see Note [Ignore unary constraint tuples] in GHC.Tc.Gen.HsType), -- this array creates one anyway. This is primarily motivated by the fact -- that (1) the indices of an Array must be contiguous, and (2) we would like -- the index of a constraint tuple in this Array to correspond to its Arity. -- We could envision skipping over the unary constraint tuple and having index -- 1 correspond to a 2-constraint tuple (and so on), but that's more -- complicated than it's worth. -- | Given the TupleRep/SumRep tycon and list of RuntimeReps of the unboxed -- tuple/sum arguments, produces the return kind of an unboxed tuple/sum type -- constructor. @unboxedTupleSumKind [IntRep, LiftedRep] --> TYPE (TupleRep/SumRep -- [IntRep, LiftedRep])@ unboxedTupleSumKind :: TyCon -> [Type] -> Kind unboxedTupleSumKind tc rr_tys = mkTYPEapp (mkTyConApp tc [mkPromotedListTy runtimeRepTy rr_tys]) -- | Specialization of 'unboxedTupleSumKind' for tuples unboxedTupleKind :: [Type] -> Kind unboxedTupleKind = unboxedTupleSumKind tupleRepDataConTyCon mk_tuple :: Boxity -> Int -> (TyCon,DataCon) mk_tuple Boxed arity = (tycon, tuple_con) where tycon = mkTupleTyCon tc_name tc_binders tc_res_kind tc_arity tuple_con BoxedTuple flavour tc_binders = mkTemplateAnonTyConBinders (replicate arity liftedTypeKind) tc_res_kind = liftedTypeKind tc_arity = arity flavour = VanillaAlgTyCon (mkPrelTyConRepName tc_name) dc_tvs = binderVars tc_binders dc_arg_tys = mkTyVarTys dc_tvs tuple_con = pcDataCon dc_name dc_tvs dc_arg_tys tycon boxity = Boxed modu = gHC_TUPLE tc_name = mkWiredInName modu (mkTupleOcc tcName boxity arity) tc_uniq (ATyCon tycon) BuiltInSyntax dc_name = mkWiredInName modu (mkTupleOcc dataName boxity arity) dc_uniq (AConLike (RealDataCon tuple_con)) BuiltInSyntax tc_uniq = mkTupleTyConUnique boxity arity dc_uniq = mkTupleDataConUnique boxity arity mk_tuple Unboxed arity = (tycon, tuple_con) where tycon = mkTupleTyCon tc_name tc_binders tc_res_kind tc_arity tuple_con UnboxedTuple flavour -- See Note [Unboxed tuple RuntimeRep vars] in GHC.Core.TyCon -- Kind: forall (k1:RuntimeRep) (k2:RuntimeRep). TYPE k1 -> TYPE k2 -> TYPE (TupleRep [k1, k2]) tc_binders = mkTemplateTyConBinders (replicate arity runtimeRepTy) (\ks -> map mkTYPEapp ks) tc_res_kind = unboxedTupleKind rr_tys tc_arity = arity * 2 flavour = VanillaAlgTyCon (mkPrelTyConRepName tc_name) dc_tvs = binderVars tc_binders (rr_tys, dc_arg_tys) = splitAt arity (mkTyVarTys dc_tvs) tuple_con = pcDataCon dc_name dc_tvs dc_arg_tys tycon boxity = Unboxed modu = gHC_PRIM tc_name = mkWiredInName modu (mkTupleOcc tcName boxity arity) tc_uniq (ATyCon tycon) BuiltInSyntax dc_name = mkWiredInName modu (mkTupleOcc dataName boxity arity) dc_uniq (AConLike (RealDataCon tuple_con)) BuiltInSyntax tc_uniq = mkTupleTyConUnique boxity arity dc_uniq = mkTupleDataConUnique boxity arity mk_ctuple :: Arity -> (TyCon, DataCon, Array ConTagZ Id) mk_ctuple arity = (tycon, tuple_con, sc_sel_ids_arr) where tycon = mkClassTyCon tc_name binders roles rhs klass (mkPrelTyConRepName tc_name) klass = mk_ctuple_class tycon sc_theta sc_sel_ids tuple_con = pcDataConW dc_name tvs (map unrestricted sc_theta) tycon binders = mkTemplateAnonTyConBinders (replicate arity constraintKind) roles = replicate arity Nominal rhs = TupleTyCon{data_con = tuple_con, tup_sort = ConstraintTuple} modu = gHC_CLASSES tc_name = mkWiredInName modu (mkCTupleOcc tcName arity) tc_uniq (ATyCon tycon) BuiltInSyntax dc_name = mkWiredInName modu (mkCTupleOcc dataName arity) dc_uniq (AConLike (RealDataCon tuple_con)) BuiltInSyntax tc_uniq = mkCTupleTyConUnique arity dc_uniq = mkCTupleDataConUnique arity tvs = binderVars binders sc_theta = map mkTyVarTy tvs sc_sel_ids = [mk_sc_sel_id sc_pos | sc_pos <- [0..arity-1]] sc_sel_ids_arr = listArray (0,arity-1) sc_sel_ids mk_sc_sel_id sc_pos = let sc_sel_id_uniq = mkCTupleSelIdUnique sc_pos arity sc_sel_id_occ = mkCTupleOcc tcName arity sc_sel_id_name = mkWiredInIdName gHC_CLASSES (occNameFS (mkSuperDictSelOcc sc_pos sc_sel_id_occ)) sc_sel_id_uniq sc_sel_id sc_sel_id = mkDictSelId sc_sel_id_name klass in sc_sel_id unitTyCon :: TyCon unitTyCon = tupleTyCon Boxed 0 unitTyConKey :: Unique unitTyConKey = getUnique unitTyCon unitDataCon :: DataCon unitDataCon = head (tyConDataCons unitTyCon) unitDataConId :: Id unitDataConId = dataConWorkId unitDataCon soloTyCon :: TyCon soloTyCon = tupleTyCon Boxed 1 pairTyCon :: TyCon pairTyCon = tupleTyCon Boxed 2 unboxedUnitTy :: Type unboxedUnitTy = mkTyConTy unboxedUnitTyCon unboxedUnitTyCon :: TyCon unboxedUnitTyCon = tupleTyCon Unboxed 0 unboxedUnitDataCon :: DataCon unboxedUnitDataCon = tupleDataCon Unboxed 0 {- ********************************************************************* * * Unboxed sums * * ********************************************************************* -} -- | OccName for n-ary unboxed sum type constructor. mkSumTyConOcc :: Arity -> OccName mkSumTyConOcc n = mkOccName tcName str where -- No need to cache these, the caching is done in mk_sum str = '(' : '#' : ' ' : bars ++ " #)" bars = intersperse ' ' $ replicate (n-1) '|' -- | OccName for i-th alternative of n-ary unboxed sum data constructor. mkSumDataConOcc :: ConTag -> Arity -> OccName mkSumDataConOcc alt n = mkOccName dataName str where -- No need to cache these, the caching is done in mk_sum str = '(' : '#' : ' ' : bars alt ++ '_' : bars (n - alt - 1) ++ " #)" bars i = intersperse ' ' $ replicate i '|' -- | Type constructor for n-ary unboxed sum. sumTyCon :: Arity -> TyCon sumTyCon arity | arity > mAX_SUM_SIZE = fst (mk_sum arity) -- Build one specially | arity < 2 = panic ("sumTyCon: Arity starts from 2. (arity: " ++ show arity ++ ")") | otherwise = fst (unboxedSumArr ! arity) -- | Data constructor for i-th alternative of a n-ary unboxed sum. sumDataCon :: ConTag -- Alternative -> Arity -- Arity -> DataCon sumDataCon alt arity | alt > arity = panic ("sumDataCon: index out of bounds: alt: " ++ show alt ++ " > arity " ++ show arity) | alt <= 0 = panic ("sumDataCon: Alts start from 1. (alt: " ++ show alt ++ ", arity: " ++ show arity ++ ")") | arity < 2 = panic ("sumDataCon: Arity starts from 2. (alt: " ++ show alt ++ ", arity: " ++ show arity ++ ")") | arity > mAX_SUM_SIZE = snd (mk_sum arity) ! (alt - 1) -- Build one specially | otherwise = snd (unboxedSumArr ! arity) ! (alt - 1) -- | Cached type and data constructors for sums. The outer array is -- indexed by the arity of the sum and the inner array is indexed by -- the alternative. unboxedSumArr :: Array Int (TyCon, Array Int DataCon) unboxedSumArr = listArray (2,mAX_SUM_SIZE) [mk_sum i | i <- [2..mAX_SUM_SIZE]] -- | Specialization of 'unboxedTupleSumKind' for sums unboxedSumKind :: [Type] -> Kind unboxedSumKind = unboxedTupleSumKind sumRepDataConTyCon -- | Create type constructor and data constructors for n-ary unboxed sum. mk_sum :: Arity -> (TyCon, Array ConTagZ DataCon) mk_sum arity = (tycon, sum_cons) where tycon = mkSumTyCon tc_name tc_binders tc_res_kind (arity * 2) tyvars (elems sum_cons) UnboxedSumTyCon tc_binders = mkTemplateTyConBinders (replicate arity runtimeRepTy) (\ks -> map mkTYPEapp ks) tyvars = binderVars tc_binders tc_res_kind = unboxedSumKind rr_tys (rr_tys, tyvar_tys) = splitAt arity (mkTyVarTys tyvars) tc_name = mkWiredInName gHC_PRIM (mkSumTyConOcc arity) tc_uniq (ATyCon tycon) BuiltInSyntax sum_cons = listArray (0,arity-1) [sum_con i | i <- [0..arity-1]] sum_con i = let dc = pcDataCon dc_name tyvars -- univ tyvars [tyvar_tys !! i] -- arg types tycon dc_name = mkWiredInName gHC_PRIM (mkSumDataConOcc i arity) (dc_uniq i) (AConLike (RealDataCon dc)) BuiltInSyntax in dc tc_uniq = mkSumTyConUnique arity dc_uniq i = mkSumDataConUnique i arity {- ************************************************************************ * * Equality types and classes * * ********************************************************************* -} -- See Note [The equality types story] in GHC.Builtin.Types.Prim -- ((~~) :: forall k1 k2 (a :: k1) (b :: k2). a -> b -> Constraint) -- -- It's tempting to put functional dependencies on (~~), but it's not -- necessary because the functional-dependency coverage check looks -- through superclasses, and (~#) is handled in that check. eqTyCon, heqTyCon, coercibleTyCon :: TyCon eqClass, heqClass, coercibleClass :: Class eqDataCon, heqDataCon, coercibleDataCon :: DataCon eqSCSelId, heqSCSelId, coercibleSCSelId :: Id (eqTyCon, eqClass, eqDataCon, eqSCSelId) = (tycon, klass, datacon, sc_sel_id) where tycon = mkClassTyCon eqTyConName binders roles rhs klass (mkPrelTyConRepName eqTyConName) klass = mk_class tycon sc_pred sc_sel_id datacon = pcDataConW eqDataConName tvs [unrestricted sc_pred] tycon -- Kind: forall k. k -> k -> Constraint binders = mkTemplateTyConBinders [liftedTypeKind] (\[k] -> [k,k]) roles = [Nominal, Nominal, Nominal] rhs = mkDataTyConRhs [datacon] tvs@[k,a,b] = binderVars binders sc_pred = mkTyConApp eqPrimTyCon (mkTyVarTys [k,k,a,b]) sc_sel_id = mkDictSelId eqSCSelIdName klass (heqTyCon, heqClass, heqDataCon, heqSCSelId) = (tycon, klass, datacon, sc_sel_id) where tycon = mkClassTyCon heqTyConName binders roles rhs klass (mkPrelTyConRepName heqTyConName) klass = mk_class tycon sc_pred sc_sel_id datacon = pcDataConW heqDataConName tvs [unrestricted sc_pred] tycon -- Kind: forall k1 k2. k1 -> k2 -> Constraint binders = mkTemplateTyConBinders [liftedTypeKind, liftedTypeKind] id roles = [Nominal, Nominal, Nominal, Nominal] rhs = mkDataTyConRhs [datacon] tvs = binderVars binders sc_pred = mkTyConApp eqPrimTyCon (mkTyVarTys tvs) sc_sel_id = mkDictSelId heqSCSelIdName klass (coercibleTyCon, coercibleClass, coercibleDataCon, coercibleSCSelId) = (tycon, klass, datacon, sc_sel_id) where tycon = mkClassTyCon coercibleTyConName binders roles rhs klass (mkPrelTyConRepName coercibleTyConName) klass = mk_class tycon sc_pred sc_sel_id datacon = pcDataConW coercibleDataConName tvs [unrestricted sc_pred] tycon -- Kind: forall k. k -> k -> Constraint binders = mkTemplateTyConBinders [liftedTypeKind] (\[k] -> [k,k]) roles = [Nominal, Representational, Representational] rhs = mkDataTyConRhs [datacon] tvs@[k,a,b] = binderVars binders sc_pred = mkTyConApp eqReprPrimTyCon (mkTyVarTys [k, k, a, b]) sc_sel_id = mkDictSelId coercibleSCSelIdName klass mk_class :: TyCon -> PredType -> Id -> Class mk_class tycon sc_pred sc_sel_id = mkClass (tyConName tycon) (tyConTyVars tycon) [] [sc_pred] [sc_sel_id] [] [] (mkAnd []) tycon mk_ctuple_class :: TyCon -> ThetaType -> [Id] -> Class mk_ctuple_class tycon sc_theta sc_sel_ids = mkClass (tyConName tycon) (tyConTyVars tycon) [] sc_theta sc_sel_ids [] [] (mkAnd []) tycon {- ********************************************************************* * * Multiplicity Polymorphism * * ********************************************************************* -} {- Multiplicity polymorphism is implemented very similarly to representation polymorphism. We write in the multiplicity kind and the One and Many types which can appear in user programs. These are defined properly in GHC.Types. data Multiplicity = One | Many -} multiplicityTy :: Type multiplicityTy = mkTyConTy multiplicityTyCon multiplicityTyCon :: TyCon multiplicityTyCon = pcTyCon multiplicityTyConName Nothing [] [oneDataCon, manyDataCon] oneDataCon, manyDataCon :: DataCon oneDataCon = pcDataCon oneDataConName [] [] multiplicityTyCon manyDataCon = pcDataCon manyDataConName [] [] multiplicityTyCon oneDataConTy, manyDataConTy :: Type oneDataConTy = mkTyConTy oneDataConTyCon manyDataConTy = mkTyConTy manyDataConTyCon oneDataConTyCon, manyDataConTyCon :: TyCon oneDataConTyCon = promoteDataCon oneDataCon manyDataConTyCon = promoteDataCon manyDataCon multMulTyConName :: Name multMulTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "MultMul") multMulTyConKey multMulTyCon multMulTyCon :: TyCon multMulTyCon = mkFamilyTyCon multMulTyConName binders multiplicityTy Nothing (BuiltInSynFamTyCon trivialBuiltInFamily) Nothing NotInjective where binders = mkTemplateAnonTyConBinders [multiplicityTy, multiplicityTy] unrestrictedFunTy :: Type unrestrictedFunTy = functionWithMultiplicity manyDataConTy unrestrictedFunTyCon :: TyCon unrestrictedFunTyCon = buildSynTyCon unrestrictedFunTyConName [] arrowKind [] unrestrictedFunTy where arrowKind = mkTyConKind binders liftedTypeKind -- See also funTyCon binders = [ Bndr runtimeRep1TyVar (NamedTCB Inferred) , Bndr runtimeRep2TyVar (NamedTCB Inferred) ] ++ mkTemplateAnonTyConBinders [ mkTYPEapp runtimeRep1Ty , mkTYPEapp runtimeRep2Ty ] unrestrictedFunTyConName :: Name unrestrictedFunTyConName = mkWiredInTyConName BuiltInSyntax gHC_TYPES (fsLit "->") unrestrictedFunTyConKey unrestrictedFunTyCon {- ********************************************************************* * * Type synonyms (all declared in ghc-prim:GHC.Types) type Type = TYPE LiftedRep -- liftedTypeKind type UnliftedType = TYPE UnliftedRep -- unliftedTypeKind type LiftedRep = BoxedRep Lifted -- liftedRepTy type UnliftedRep = BoxedRep Unlifted -- unliftedRepTy * * ********************************************************************* -} -- For these synonyms, see -- Note [TYPE and RuntimeRep] in GHC.Builtin.Types.Prim, and -- Note [Using synonyms to compress types] in GHC.Core.Type ---------------------- -- @type Type = TYPE ('BoxedRep 'Lifted)@ liftedTypeKindTyCon :: TyCon liftedTypeKindTyCon = buildSynTyCon liftedTypeKindTyConName [] liftedTypeKind [] rhs where rhs = TyCoRep.TyConApp tYPETyCon [liftedRepTy] liftedTypeKind :: Type liftedTypeKind = mkTyConTy liftedTypeKindTyCon ---------------------- -- | @type UnliftedType = TYPE ('BoxedRep 'Unlifted)@ unliftedTypeKindTyCon :: TyCon unliftedTypeKindTyCon = buildSynTyCon unliftedTypeKindTyConName [] liftedTypeKind [] rhs where rhs = TyCoRep.TyConApp tYPETyCon [unliftedRepTy] unliftedTypeKind :: Type unliftedTypeKind = mkTyConTy unliftedTypeKindTyCon ---------------------- -- @type ZeroBitType = TYPE ZeroBitRep zeroBitTypeTyCon :: TyCon zeroBitTypeTyCon = buildSynTyCon zeroBitTypeTyConName [] liftedTypeKind [] rhs where rhs = TyCoRep.TyConApp tYPETyCon [zeroBitRepTy] zeroBitTypeKind :: Type zeroBitTypeKind = mkTyConTy zeroBitTypeTyCon ---------------------- -- | @type LiftedRep = 'BoxedRep 'Lifted@ liftedRepTyCon :: TyCon liftedRepTyCon = buildSynTyCon liftedRepTyConName [] runtimeRepTy [] rhs where rhs = TyCoRep.TyConApp boxedRepDataConTyCon [liftedDataConTy] liftedRepTy :: Type liftedRepTy = mkTyConTy liftedRepTyCon ---------------------- -- | @type UnliftedRep = 'BoxedRep 'Unlifted@ unliftedRepTyCon :: TyCon unliftedRepTyCon = buildSynTyCon unliftedRepTyConName [] runtimeRepTy [] rhs where rhs = TyCoRep.TyConApp boxedRepDataConTyCon [unliftedDataConTy] unliftedRepTy :: Type unliftedRepTy = mkTyConTy unliftedRepTyCon ---------------------- -- | @type ZeroBitRep = 'Tuple '[] zeroBitRepTyCon :: TyCon zeroBitRepTyCon = buildSynTyCon zeroBitRepTyConName [] runtimeRepTy [] rhs where rhs = TyCoRep.TyConApp tupleRepDataConTyCon [mkPromotedListTy runtimeRepTy []] zeroBitRepTy :: Type zeroBitRepTy = mkTyConTy zeroBitRepTyCon {- ********************************************************************* * * data Levity = Lifted | Unlifted * * ********************************************************************* -} levityTyCon :: TyCon levityTyCon = pcTyCon levityTyConName Nothing [] [liftedDataCon,unliftedDataCon] levityTy :: Type levityTy = mkTyConTy levityTyCon liftedDataCon, unliftedDataCon :: DataCon liftedDataCon = pcSpecialDataCon liftedDataConName [] levityTyCon LiftedInfo unliftedDataCon = pcSpecialDataCon unliftedDataConName [] levityTyCon UnliftedInfo liftedDataConTyCon :: TyCon liftedDataConTyCon = promoteDataCon liftedDataCon unliftedDataConTyCon :: TyCon unliftedDataConTyCon = promoteDataCon unliftedDataCon liftedDataConTy :: Type liftedDataConTy = mkTyConTy liftedDataConTyCon unliftedDataConTy :: Type unliftedDataConTy = mkTyConTy unliftedDataConTyCon {- ********************************************************************* * * See Note [Wiring in RuntimeRep] data RuntimeRep = VecRep VecCount VecElem | TupleRep [RuntimeRep] | SumRep [RuntimeRep] | BoxedRep Levity | IntRep | Int8Rep | ...etc... * * ********************************************************************* -} {- Note [Wiring in RuntimeRep] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The RuntimeRep type (and friends) in GHC.Types has a bunch of constructors, making it a pain to wire in. To ease the pain somewhat, we use lists of the different bits, like Uniques, Names, DataCons. These lists must be kept in sync with each other. The rule is this: use the order as declared in GHC.Types. All places where such lists exist should contain a reference to this Note, so a search for this Note's name should find all the lists. See also Note [Getting from RuntimeRep to PrimRep] in GHC.Types.RepType. -} runtimeRepTyCon :: TyCon runtimeRepTyCon = pcTyCon runtimeRepTyConName Nothing [] (vecRepDataCon : tupleRepDataCon : sumRepDataCon : boxedRepDataCon : runtimeRepSimpleDataCons) runtimeRepTy :: Type runtimeRepTy = mkTyConTy runtimeRepTyCon boxedRepDataCon :: DataCon boxedRepDataCon = pcSpecialDataCon boxedRepDataConName [ levityTy ] runtimeRepTyCon (RuntimeRep prim_rep_fun) where -- See Note [Getting from RuntimeRep to PrimRep] in RepType prim_rep_fun [lev] = case tyConRuntimeRepInfo (tyConAppTyCon lev) of LiftedInfo -> [LiftedRep] UnliftedInfo -> [UnliftedRep] _ -> pprPanic "boxedRepDataCon" (ppr lev) prim_rep_fun args = pprPanic "boxedRepDataCon" (ppr args) boxedRepDataConTyCon :: TyCon boxedRepDataConTyCon = promoteDataCon boxedRepDataCon vecRepDataCon :: DataCon vecRepDataCon = pcSpecialDataCon vecRepDataConName [ mkTyConTy vecCountTyCon , mkTyConTy vecElemTyCon ] runtimeRepTyCon (RuntimeRep prim_rep_fun) where -- See Note [Getting from RuntimeRep to PrimRep] in GHC.Types.RepType prim_rep_fun [count, elem] | VecCount n <- tyConRuntimeRepInfo (tyConAppTyCon count) , VecElem e <- tyConRuntimeRepInfo (tyConAppTyCon elem) = [VecRep n e] prim_rep_fun args = pprPanic "vecRepDataCon" (ppr args) vecRepDataConTyCon :: TyCon vecRepDataConTyCon = promoteDataCon vecRepDataCon tupleRepDataCon :: DataCon tupleRepDataCon = pcSpecialDataCon tupleRepDataConName [ mkListTy runtimeRepTy ] runtimeRepTyCon (RuntimeRep prim_rep_fun) where -- See Note [Getting from RuntimeRep to PrimRep] in GHC.Types.RepType prim_rep_fun [rr_ty_list] = concatMap (runtimeRepPrimRep doc) rr_tys where rr_tys = extractPromotedList rr_ty_list doc = text "tupleRepDataCon" <+> ppr rr_tys prim_rep_fun args = pprPanic "tupleRepDataCon" (ppr args) tupleRepDataConTyCon :: TyCon tupleRepDataConTyCon = promoteDataCon tupleRepDataCon sumRepDataCon :: DataCon sumRepDataCon = pcSpecialDataCon sumRepDataConName [ mkListTy runtimeRepTy ] runtimeRepTyCon (RuntimeRep prim_rep_fun) where -- See Note [Getting from RuntimeRep to PrimRep] in GHC.Types.RepType prim_rep_fun [rr_ty_list] = map slotPrimRep (ubxSumRepType prim_repss) where rr_tys = extractPromotedList rr_ty_list doc = text "sumRepDataCon" <+> ppr rr_tys prim_repss = map (runtimeRepPrimRep doc) rr_tys prim_rep_fun args = pprPanic "sumRepDataCon" (ppr args) sumRepDataConTyCon :: TyCon sumRepDataConTyCon = promoteDataCon sumRepDataCon -- See Note [Wiring in RuntimeRep] -- See Note [Getting from RuntimeRep to PrimRep] in GHC.Types.RepType runtimeRepSimpleDataCons :: [DataCon] runtimeRepSimpleDataCons = zipWithLazy mk_runtime_rep_dc [ IntRep , Int8Rep, Int16Rep, Int32Rep, Int64Rep , WordRep , Word8Rep, Word16Rep, Word32Rep, Word64Rep , AddrRep , FloatRep, DoubleRep ] runtimeRepSimpleDataConNames where mk_runtime_rep_dc primrep name = pcSpecialDataCon name [] runtimeRepTyCon (RuntimeRep (\_ -> [primrep])) -- See Note [Wiring in RuntimeRep] intRepDataConTy, int8RepDataConTy, int16RepDataConTy, int32RepDataConTy, int64RepDataConTy, wordRepDataConTy, word8RepDataConTy, word16RepDataConTy, word32RepDataConTy, word64RepDataConTy, addrRepDataConTy, floatRepDataConTy, doubleRepDataConTy :: Type [intRepDataConTy, int8RepDataConTy, int16RepDataConTy, int32RepDataConTy, int64RepDataConTy, wordRepDataConTy, word8RepDataConTy, word16RepDataConTy, word32RepDataConTy, word64RepDataConTy, addrRepDataConTy, floatRepDataConTy, doubleRepDataConTy ] = map (mkTyConTy . promoteDataCon) runtimeRepSimpleDataCons vecCountTyCon :: TyCon vecCountTyCon = pcTyCon vecCountTyConName Nothing [] vecCountDataCons -- See Note [Wiring in RuntimeRep] vecCountDataCons :: [DataCon] vecCountDataCons = zipWithLazy mk_vec_count_dc [ 2, 4, 8, 16, 32, 64 ] vecCountDataConNames where mk_vec_count_dc n name = pcSpecialDataCon name [] vecCountTyCon (VecCount n) -- See Note [Wiring in RuntimeRep] vec2DataConTy, vec4DataConTy, vec8DataConTy, vec16DataConTy, vec32DataConTy, vec64DataConTy :: Type [vec2DataConTy, vec4DataConTy, vec8DataConTy, vec16DataConTy, vec32DataConTy, vec64DataConTy] = map (mkTyConTy . promoteDataCon) vecCountDataCons vecElemTyCon :: TyCon vecElemTyCon = pcTyCon vecElemTyConName Nothing [] vecElemDataCons -- See Note [Wiring in RuntimeRep] vecElemDataCons :: [DataCon] vecElemDataCons = zipWithLazy mk_vec_elem_dc [ Int8ElemRep, Int16ElemRep, Int32ElemRep, Int64ElemRep , Word8ElemRep, Word16ElemRep, Word32ElemRep, Word64ElemRep , FloatElemRep, DoubleElemRep ] vecElemDataConNames where mk_vec_elem_dc elem name = pcSpecialDataCon name [] vecElemTyCon (VecElem elem) -- See Note [Wiring in RuntimeRep] int8ElemRepDataConTy, int16ElemRepDataConTy, int32ElemRepDataConTy, int64ElemRepDataConTy, word8ElemRepDataConTy, word16ElemRepDataConTy, word32ElemRepDataConTy, word64ElemRepDataConTy, floatElemRepDataConTy, doubleElemRepDataConTy :: Type [int8ElemRepDataConTy, int16ElemRepDataConTy, int32ElemRepDataConTy, int64ElemRepDataConTy, word8ElemRepDataConTy, word16ElemRepDataConTy, word32ElemRepDataConTy, word64ElemRepDataConTy, floatElemRepDataConTy, doubleElemRepDataConTy] = map (mkTyConTy . promoteDataCon) vecElemDataCons {- ********************************************************************* * * The boxed primitive types: Char, Int, etc * * ********************************************************************* -} boxingDataCon_maybe :: TyCon -> Maybe DataCon -- boxingDataCon_maybe Char# = C# -- boxingDataCon_maybe Int# = I# -- ... etc ... -- See Note [Boxing primitive types] boxingDataCon_maybe tc = lookupNameEnv boxing_constr_env (tyConName tc) boxing_constr_env :: NameEnv DataCon boxing_constr_env = mkNameEnv [(charPrimTyConName , charDataCon ) ,(intPrimTyConName , intDataCon ) ,(wordPrimTyConName , wordDataCon ) ,(floatPrimTyConName , floatDataCon ) ,(doublePrimTyConName, doubleDataCon) ] {- Note [Boxing primitive types] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ For a handful of primitive types (Int, Char, Word, Float, Double), we can readily box and an unboxed version (Int#, Char# etc) using the corresponding data constructor. This is useful in a couple of places, notably let-floating -} charTy :: Type charTy = mkTyConTy charTyCon charTyCon :: TyCon charTyCon = pcTyCon charTyConName (Just (CType NoSourceText Nothing (NoSourceText,fsLit "HsChar"))) [] [charDataCon] charDataCon :: DataCon charDataCon = pcDataCon charDataConName [] [charPrimTy] charTyCon stringTy :: Type stringTy = mkTyConTy stringTyCon stringTyCon :: TyCon -- We have this wired-in so that Haskell literal strings -- get type String (in hsLitType), which in turn influences -- inferred types and error messages stringTyCon = buildSynTyCon stringTyConName [] liftedTypeKind [] (mkListTy charTy) intTy :: Type intTy = mkTyConTy intTyCon intTyCon :: TyCon intTyCon = pcTyCon intTyConName (Just (CType NoSourceText Nothing (NoSourceText,fsLit "HsInt"))) [] [intDataCon] intDataCon :: DataCon intDataCon = pcDataCon intDataConName [] [intPrimTy] intTyCon wordTy :: Type wordTy = mkTyConTy wordTyCon wordTyCon :: TyCon wordTyCon = pcTyCon wordTyConName (Just (CType NoSourceText Nothing (NoSourceText, fsLit "HsWord"))) [] [wordDataCon] wordDataCon :: DataCon wordDataCon = pcDataCon wordDataConName [] [wordPrimTy] wordTyCon word8Ty :: Type word8Ty = mkTyConTy word8TyCon word8TyCon :: TyCon word8TyCon = pcTyCon word8TyConName (Just (CType NoSourceText Nothing (NoSourceText, fsLit "HsWord8"))) [] [word8DataCon] word8DataCon :: DataCon word8DataCon = pcDataCon word8DataConName [] [word8PrimTy] word8TyCon floatTy :: Type floatTy = mkTyConTy floatTyCon floatTyCon :: TyCon floatTyCon = pcTyCon floatTyConName (Just (CType NoSourceText Nothing (NoSourceText, fsLit "HsFloat"))) [] [floatDataCon] floatDataCon :: DataCon floatDataCon = pcDataCon floatDataConName [] [floatPrimTy] floatTyCon doubleTy :: Type doubleTy = mkTyConTy doubleTyCon doubleTyCon :: TyCon doubleTyCon = pcTyCon doubleTyConName (Just (CType NoSourceText Nothing (NoSourceText,fsLit "HsDouble"))) [] [doubleDataCon] doubleDataCon :: DataCon doubleDataCon = pcDataCon doubleDataConName [] [doublePrimTy] doubleTyCon {- ************************************************************************ * * The Bool type * * ************************************************************************ An ordinary enumeration type, but deeply wired in. There are no magical operations on @Bool@ (just the regular Prelude code). {\em BEGIN IDLE SPECULATION BY SIMON} This is not the only way to encode @Bool@. A more obvious coding makes @Bool@ just a boxed up version of @Bool#@, like this: \begin{verbatim} type Bool# = Int# data Bool = MkBool Bool# \end{verbatim} Unfortunately, this doesn't correspond to what the Report says @Bool@ looks like! Furthermore, we get slightly less efficient code (I think) with this coding. @gtInt@ would look like this: \begin{verbatim} gtInt :: Int -> Int -> Bool gtInt x y = case x of I# x# -> case y of I# y# -> case (gtIntPrim x# y#) of b# -> MkBool b# \end{verbatim} Notice that the result of the @gtIntPrim@ comparison has to be turned into an integer (here called @b#@), and returned in a @MkBool@ box. The @if@ expression would compile to this: \begin{verbatim} case (gtInt x y) of MkBool b# -> case b# of { 1# -> e1; 0# -> e2 } \end{verbatim} I think this code is a little less efficient than the previous code, but I'm not certain. At all events, corresponding with the Report is important. The interesting thing is that the language is expressive enough to describe more than one alternative; and that a type doesn't necessarily need to be a straightforwardly boxed version of its primitive counterpart. {\em END IDLE SPECULATION BY SIMON} -} boolTy :: Type boolTy = mkTyConTy boolTyCon boolTyCon :: TyCon boolTyCon = pcTyCon boolTyConName (Just (CType NoSourceText Nothing (NoSourceText, fsLit "HsBool"))) [] [falseDataCon, trueDataCon] falseDataCon, trueDataCon :: DataCon falseDataCon = pcDataCon falseDataConName [] [] boolTyCon trueDataCon = pcDataCon trueDataConName [] [] boolTyCon falseDataConId, trueDataConId :: Id falseDataConId = dataConWorkId falseDataCon trueDataConId = dataConWorkId trueDataCon orderingTyCon :: TyCon orderingTyCon = pcTyCon orderingTyConName Nothing [] [ordLTDataCon, ordEQDataCon, ordGTDataCon] ordLTDataCon, ordEQDataCon, ordGTDataCon :: DataCon ordLTDataCon = pcDataCon ordLTDataConName [] [] orderingTyCon ordEQDataCon = pcDataCon ordEQDataConName [] [] orderingTyCon ordGTDataCon = pcDataCon ordGTDataConName [] [] orderingTyCon ordLTDataConId, ordEQDataConId, ordGTDataConId :: Id ordLTDataConId = dataConWorkId ordLTDataCon ordEQDataConId = dataConWorkId ordEQDataCon ordGTDataConId = dataConWorkId ordGTDataCon {- ************************************************************************ * * The List type Special syntax, deeply wired in, but otherwise an ordinary algebraic data type * * ************************************************************************ data [] a = [] | a : (List a) -} mkListTy :: Type -> Type mkListTy ty = mkTyConApp listTyCon [ty] listTyCon :: TyCon listTyCon = pcTyCon listTyConName Nothing [alphaTyVar] [nilDataCon, consDataCon] -- See also Note [Empty lists] in GHC.Hs.Expr. nilDataCon :: DataCon nilDataCon = pcDataCon nilDataConName alpha_tyvar [] listTyCon consDataCon :: DataCon consDataCon = pcDataConWithFixity True {- Declared infix -} consDataConName alpha_tyvar [] alpha_tyvar (map linear [alphaTy, mkTyConApp listTyCon alpha_ty]) listTyCon -- Interesting: polymorphic recursion would help here. -- We can't use (mkListTy alphaTy) in the defn of consDataCon, else mkListTy -- gets the over-specific type (Type -> Type) -- NonEmpty lists (used for 'ProjectionE') nonEmptyTyCon :: TyCon nonEmptyTyCon = pcTyCon nonEmptyTyConName Nothing [alphaTyVar] [nonEmptyDataCon] nonEmptyDataCon :: DataCon nonEmptyDataCon = pcDataConWithFixity True {- Declared infix -} nonEmptyDataConName alpha_tyvar [] alpha_tyvar (map linear [alphaTy, mkTyConApp listTyCon alpha_ty]) nonEmptyTyCon -- Wired-in type Maybe maybeTyCon :: TyCon maybeTyCon = pcTyCon maybeTyConName Nothing alpha_tyvar [nothingDataCon, justDataCon] nothingDataCon :: DataCon nothingDataCon = pcDataCon nothingDataConName alpha_tyvar [] maybeTyCon justDataCon :: DataCon justDataCon = pcDataCon justDataConName alpha_tyvar [alphaTy] maybeTyCon mkPromotedMaybeTy :: Kind -> Maybe Type -> Type mkPromotedMaybeTy k (Just x) = mkTyConApp promotedJustDataCon [k,x] mkPromotedMaybeTy k Nothing = mkTyConApp promotedNothingDataCon [k] mkMaybeTy :: Type -> Kind mkMaybeTy t = mkTyConApp maybeTyCon [t] isPromotedMaybeTy :: Type -> Maybe (Maybe Type) isPromotedMaybeTy t | Just (tc,[_,x]) <- splitTyConApp_maybe t, tc == promotedJustDataCon = return $ Just x | Just (tc,[_]) <- splitTyConApp_maybe t, tc == promotedNothingDataCon = return $ Nothing | otherwise = Nothing {- ** ********************************************************************* * * The tuple types * * ************************************************************************ The tuple types are definitely magic, because they form an infinite family. \begin{itemize} \item They have a special family of type constructors, of type @TyCon@ These contain the tycon arity, but don't require a Unique. \item They have a special family of constructors, of type @Id@. Again these contain their arity but don't need a Unique. \item There should be a magic way of generating the info tables and entry code for all tuples. But at the moment we just compile a Haskell source file\srcloc{lib/prelude/...} containing declarations like: \begin{verbatim} data Tuple0 = Tup0 data Tuple2 a b = Tup2 a b data Tuple3 a b c = Tup3 a b c data Tuple4 a b c d = Tup4 a b c d ... \end{verbatim} The print-names associated with the magic @Id@s for tuple constructors ``just happen'' to be the same as those generated by these declarations. \item The instance environment should have a magic way to know that each tuple type is an instances of classes @Eq@, @Ix@, @Ord@ and so on. \ToDo{Not implemented yet.} \item There should also be a way to generate the appropriate code for each of these instances, but (like the info tables and entry code) it is done by enumeration\srcloc{lib/prelude/InTup?.hs}. \end{itemize} -} -- | Make a tuple type. The list of types should /not/ include any -- RuntimeRep specifications. Boxed 1-tuples are flattened. -- See Note [One-tuples] mkTupleTy :: Boxity -> [Type] -> Type -- Special case for *boxed* 1-tuples, which are represented by the type itself mkTupleTy Boxed [ty] = ty mkTupleTy boxity tys = mkTupleTy1 boxity tys -- | Make a tuple type. The list of types should /not/ include any -- RuntimeRep specifications. Boxed 1-tuples are *not* flattened. -- See Note [One-tuples] and Note [Don't flatten tuples from HsSyn] -- in "GHC.Core.Make" mkTupleTy1 :: Boxity -> [Type] -> Type mkTupleTy1 Boxed tys = mkTyConApp (tupleTyCon Boxed (length tys)) tys mkTupleTy1 Unboxed tys = mkTyConApp (tupleTyCon Unboxed (length tys)) (map getRuntimeRep tys ++ tys) -- | Build the type of a small tuple that holds the specified type of thing -- Flattens 1-tuples. See Note [One-tuples]. mkBoxedTupleTy :: [Type] -> Type mkBoxedTupleTy tys = mkTupleTy Boxed tys unitTy :: Type unitTy = mkTupleTy Boxed [] {- ********************************************************************* * * The sum types * * ************************************************************************ -} mkSumTy :: [Type] -> Type mkSumTy tys = mkTyConApp (sumTyCon (length tys)) (map getRuntimeRep tys ++ tys) -- Promoted Booleans promotedFalseDataCon, promotedTrueDataCon :: TyCon promotedTrueDataCon = promoteDataCon trueDataCon promotedFalseDataCon = promoteDataCon falseDataCon -- Promoted Maybe promotedNothingDataCon, promotedJustDataCon :: TyCon promotedNothingDataCon = promoteDataCon nothingDataCon promotedJustDataCon = promoteDataCon justDataCon -- Promoted Ordering promotedLTDataCon , promotedEQDataCon , promotedGTDataCon :: TyCon promotedLTDataCon = promoteDataCon ordLTDataCon promotedEQDataCon = promoteDataCon ordEQDataCon promotedGTDataCon = promoteDataCon ordGTDataCon -- Promoted List promotedConsDataCon, promotedNilDataCon :: TyCon promotedConsDataCon = promoteDataCon consDataCon promotedNilDataCon = promoteDataCon nilDataCon -- | Make a *promoted* list. mkPromotedListTy :: Kind -- ^ of the elements of the list -> [Type] -- ^ elements -> Type mkPromotedListTy k tys = foldr cons nil tys where cons :: Type -- element -> Type -- list -> Type cons elt list = mkTyConApp promotedConsDataCon [k, elt, list] nil :: Type nil = mkTyConApp promotedNilDataCon [k] -- | Extract the elements of a promoted list. Panics if the type is not a -- promoted list extractPromotedList :: Type -- ^ The promoted list -> [Type] extractPromotedList tys = go tys where go list_ty | Just (tc, [_k, t, ts]) <- splitTyConApp_maybe list_ty = assert (tc `hasKey` consDataConKey) $ t : go ts | Just (tc, [_k]) <- splitTyConApp_maybe list_ty = assert (tc `hasKey` nilDataConKey) [] | otherwise = pprPanic "extractPromotedList" (ppr tys) --------------------------------------- -- ghc-bignum --------------------------------------- integerTyConName , integerISDataConName , integerIPDataConName , integerINDataConName :: Name integerTyConName = mkWiredInTyConName UserSyntax gHC_NUM_INTEGER (fsLit "Integer") integerTyConKey integerTyCon integerISDataConName = mkWiredInDataConName UserSyntax gHC_NUM_INTEGER (fsLit "IS") integerISDataConKey integerISDataCon integerIPDataConName = mkWiredInDataConName UserSyntax gHC_NUM_INTEGER (fsLit "IP") integerIPDataConKey integerIPDataCon integerINDataConName = mkWiredInDataConName UserSyntax gHC_NUM_INTEGER (fsLit "IN") integerINDataConKey integerINDataCon integerTy :: Type integerTy = mkTyConTy integerTyCon integerTyCon :: TyCon integerTyCon = pcTyCon integerTyConName Nothing [] [integerISDataCon, integerIPDataCon, integerINDataCon] integerISDataCon :: DataCon integerISDataCon = pcDataCon integerISDataConName [] [intPrimTy] integerTyCon integerIPDataCon :: DataCon integerIPDataCon = pcDataCon integerIPDataConName [] [byteArrayPrimTy] integerTyCon integerINDataCon :: DataCon integerINDataCon = pcDataCon integerINDataConName [] [byteArrayPrimTy] integerTyCon naturalTyConName , naturalNSDataConName , naturalNBDataConName :: Name naturalTyConName = mkWiredInTyConName UserSyntax gHC_NUM_NATURAL (fsLit "Natural") naturalTyConKey naturalTyCon naturalNSDataConName = mkWiredInDataConName UserSyntax gHC_NUM_NATURAL (fsLit "NS") naturalNSDataConKey naturalNSDataCon naturalNBDataConName = mkWiredInDataConName UserSyntax gHC_NUM_NATURAL (fsLit "NB") naturalNBDataConKey naturalNBDataCon naturalTy :: Type naturalTy = mkTyConTy naturalTyCon naturalTyCon :: TyCon naturalTyCon = pcTyCon naturalTyConName Nothing [] [naturalNSDataCon, naturalNBDataCon] naturalNSDataCon :: DataCon naturalNSDataCon = pcDataCon naturalNSDataConName [] [wordPrimTy] naturalTyCon naturalNBDataCon :: DataCon naturalNBDataCon = pcDataCon naturalNBDataConName [] [byteArrayPrimTy] naturalTyCon -- | Replaces constraint tuple names with corresponding boxed ones. filterCTuple :: RdrName -> RdrName filterCTuple (Exact n) | Just arity <- cTupleTyConNameArity_maybe n = Exact $ tupleTyConName BoxedTuple arity filterCTuple rdr = rdr