{-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE NegativeLiterals #-} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE Trustworthy #-} {-# LANGUAGE UnboxedTuples #-} {-# OPTIONS_HADDOCK not-home #-} ----------------------------------------------------------------------------- -- | -- Module : GHC.Internal.Int -- Copyright : (c) The University of Glasgow 1997-2002 -- License : see libraries/base/LICENSE -- -- Maintainer : ghc-devs@haskell.org -- Stability : internal -- Portability : non-portable (GHC Extensions) -- -- The sized integral datatypes, 'Int8', 'Int16', 'Int32', and 'Int64'. -- ----------------------------------------------------------------------------- #include "MachDeps.h" module GHC.Internal.Int ( Int(..), Int8(..), Int16(..), Int32(..), Int64(..), uncheckedIShiftL64#, uncheckedIShiftRA64#, shiftRLInt8#, shiftRLInt16#, shiftRLInt32#, -- * Equality operators -- | See GHC.Classes#matching_overloaded_methods_in_rules eqInt, neInt, gtInt, geInt, ltInt, leInt, eqInt8, neInt8, gtInt8, geInt8, ltInt8, leInt8, eqInt16, neInt16, gtInt16, geInt16, ltInt16, leInt16, eqInt32, neInt32, gtInt32, geInt32, ltInt32, leInt32, eqInt64, neInt64, gtInt64, geInt64, ltInt64, leInt64 ) where import GHC.Internal.Data.Bits import GHC.Internal.Data.Maybe import GHC.Prim import GHC.Internal.Base import GHC.Internal.Enum import GHC.Internal.Num import GHC.Internal.Real import GHC.Internal.Read import GHC.Internal.Arr import GHC.Internal.Show ------------------------------------------------------------------------ -- type Int8 ------------------------------------------------------------------------ -- Int8 is represented in the same way as Int. Operations may assume -- and must ensure that it holds only values from its logical range. data {-# CTYPE "HsInt8" #-} Int8 = I8# Int8# -- ^ 8-bit signed integer type -- See GHC.Classes#matching_overloaded_methods_in_rules -- | @since base-2.01 instance Eq Int8 where (==) = eqInt8 (/=) = neInt8 eqInt8, neInt8 :: Int8 -> Int8 -> Bool eqInt8 (I8# x) (I8# y) = isTrue# ((int8ToInt# x) ==# (int8ToInt# y)) neInt8 (I8# x) (I8# y) = isTrue# ((int8ToInt# x) /=# (int8ToInt# y)) {-# INLINE [1] eqInt8 #-} {-# INLINE [1] neInt8 #-} -- | @since base-2.01 instance Ord Int8 where (<) = ltInt8 (<=) = leInt8 (>=) = geInt8 (>) = gtInt8 {-# INLINE [1] gtInt8 #-} {-# INLINE [1] geInt8 #-} {-# INLINE [1] ltInt8 #-} {-# INLINE [1] leInt8 #-} gtInt8, geInt8, ltInt8, leInt8 :: Int8 -> Int8 -> Bool (I8# x) `gtInt8` (I8# y) = isTrue# (x `gtInt8#` y) (I8# x) `geInt8` (I8# y) = isTrue# (x `geInt8#` y) (I8# x) `ltInt8` (I8# y) = isTrue# (x `ltInt8#` y) (I8# x) `leInt8` (I8# y) = isTrue# (x `leInt8#` y) -- | @since base-2.01 instance Show Int8 where showsPrec p x = showsPrec p (fromIntegral x :: Int) -- | @since base-2.01 instance Num Int8 where (I8# x#) + (I8# y#) = I8# (x# `plusInt8#` y#) (I8# x#) - (I8# y#) = I8# (x# `subInt8#` y#) (I8# x#) * (I8# y#) = I8# (x# `timesInt8#` y#) negate (I8# x#) = I8# (negateInt8# x#) abs x | x >= 0 = x | otherwise = negate x signum x | x > 0 = 1 signum 0 = 0 signum _ = -1 fromInteger i = I8# (intToInt8# (integerToInt# i)) -- | @since base-2.01 instance Real Int8 where toRational x = toInteger x % 1 -- | @since base-2.01 instance Enum Int8 where succ x | x /= maxBound = x + 1 | otherwise = succError "Int8" pred x | x /= minBound = x - 1 | otherwise = predError "Int8" toEnum i@(I# i#) | i >= fromIntegral (minBound::Int8) && i <= fromIntegral (maxBound::Int8) = I8# (intToInt8# i#) | otherwise = toEnumError "Int8" i (minBound::Int8, maxBound::Int8) fromEnum (I8# x#) = I# (int8ToInt# x#) -- See Note [Stable Unfolding for list producers] in GHC.Internal.Enum {-# INLINE enumFrom #-} enumFrom = boundedEnumFrom -- See Note [Stable Unfolding for list producers] in GHC.Internal.Enum {-# INLINE enumFromThen #-} enumFromThen = boundedEnumFromThen -- | @since base-2.01 instance Integral Int8 where quot x@(I8# x#) y@(I8# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I8# (x# `quotInt8#` y#) rem (I8# x#) y@(I8# y#) | y == 0 = divZeroError -- The quotRem CPU instruction might fail for 'minBound -- `quotRem` -1' if it is an instruction for exactly this -- width of signed integer. But, 'minBound `rem` -1' is -- well-defined (0). We therefore special-case it. | y == (-1) = 0 | otherwise = I8# (x# `remInt8#` y#) div x@(I8# x#) y@(I8# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I8# (x# `divInt8#` y#) mod (I8# x#) y@(I8# y#) | y == 0 = divZeroError -- The divMod CPU instruction might fail for 'minBound -- `divMod` -1' if it is an instruction for exactly this -- width of signed integer. But, 'minBound `mod` -1' is -- well-defined (0). We therefore special-case it. | y == (-1) = 0 | otherwise = I8# (x# `modInt8#` y#) quotRem x@(I8# x#) y@(I8# y#) | y == 0 = divZeroError -- See Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = case x# `quotRemInt8#` y# of (# q, r #) -> (I8# q, I8# r) divMod x@(I8# x#) y@(I8# y#) | y == 0 = divZeroError -- See Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = case x# `divModInt8#` y# of (# d, m #) -> (I8# d, I8# m) toInteger (I8# x#) = IS (int8ToInt# x#) -- | @since base-2.01 instance Bounded Int8 where minBound = -0x80 maxBound = 0x7F -- | @since base-2.01 instance Ix Int8 where range (m,n) = [m..n] unsafeIndex (m,_) i = fromIntegral i - fromIntegral m inRange (m,n) i = m <= i && i <= n -- | @since base-2.01 instance Read Int8 where readsPrec p s = [(fromIntegral (x::Int), r) | (x, r) <- readsPrec p s] -- | @since base-2.01 instance Bits Int8 where {-# INLINE shift #-} {-# INLINE bit #-} {-# INLINE testBit #-} {-# INLINE popCount #-} (I8# x#) .&. (I8# y#) = I8# (intToInt8# ((int8ToInt# x#) `andI#` (int8ToInt# y#))) (I8# x#) .|. (I8# y#) = I8# (intToInt8# ((int8ToInt# x#) `orI#` (int8ToInt# y#))) (I8# x#) `xor` (I8# y#) = I8# (intToInt8# ((int8ToInt# x#) `xorI#` (int8ToInt# y#))) complement (I8# x#) = I8# (intToInt8# (notI# (int8ToInt# x#))) (I8# x#) `shift` (I# i#) | isTrue# (i# >=# 0#) = I8# (intToInt8# ((int8ToInt# x#) `iShiftL#` i#)) | otherwise = I8# (intToInt8# ((int8ToInt# x#) `iShiftRA#` negateInt# i#)) (I8# x#) `shiftL` (I# i#) | isTrue# (i# >=# 0#) = I8# (intToInt8# ((int8ToInt# x#) `iShiftL#` i#)) | otherwise = overflowError (I8# x#) `unsafeShiftL` (I# i#) = I8# (intToInt8# ((int8ToInt# x#) `uncheckedIShiftL#` i#)) (I8# x#) `shiftR` (I# i#) | isTrue# (i# >=# 0#) = I8# (intToInt8# ((int8ToInt# x#) `iShiftRA#` i#)) | otherwise = overflowError (I8# x#) `unsafeShiftR` (I# i#) = I8# (intToInt8# ((int8ToInt# x#) `uncheckedIShiftRA#` i#)) (I8# x#) `rotate` (I# i#) | isTrue# (i'# ==# 0#) = I8# x# | otherwise = I8# (intToInt8# (word2Int# ((x'# `uncheckedShiftL#` i'#) `or#` (x'# `uncheckedShiftRL#` (8# -# i'#))))) where !x'# = narrow8Word# (int2Word# (int8ToInt# x#)) !i'# = word2Int# (int2Word# i# `and#` 7##) bitSizeMaybe i = Just (finiteBitSize i) bitSize i = finiteBitSize i isSigned _ = True popCount (I8# x#) = I# (word2Int# (popCnt8# (int2Word# (int8ToInt# x#)))) bit i = bitDefault i testBit a i = testBitDefault a i -- | @since base-4.6.0.0 instance FiniteBits Int8 where {-# INLINE countLeadingZeros #-} {-# INLINE countTrailingZeros #-} finiteBitSize _ = 8 countLeadingZeros (I8# x#) = I# (word2Int# (clz8# (int2Word# (int8ToInt# x#)))) countTrailingZeros (I8# x#) = I# (word2Int# (ctz8# (int2Word# (int8ToInt# x#)))) {-# RULES "properFraction/Float->(Int8,Float)" properFraction = \x -> case properFraction x of { (n, y) -> ((fromIntegral :: Int -> Int8) n, y :: Float) } "truncate/Float->Int8" truncate = (fromIntegral :: Int -> Int8) . (truncate :: Float -> Int) "floor/Float->Int8" floor = (fromIntegral :: Int -> Int8) . (floor :: Float -> Int) "ceiling/Float->Int8" ceiling = (fromIntegral :: Int -> Int8) . (ceiling :: Float -> Int) "round/Float->Int8" round = (fromIntegral :: Int -> Int8) . (round :: Float -> Int) #-} {-# RULES "properFraction/Double->(Int8,Double)" properFraction = \x -> case properFraction x of { (n, y) -> ((fromIntegral :: Int -> Int8) n, y :: Double) } "truncate/Double->Int8" truncate = (fromIntegral :: Int -> Int8) . (truncate :: Double -> Int) "floor/Double->Int8" floor = (fromIntegral :: Int -> Int8) . (floor :: Double -> Int) "ceiling/Double->Int8" ceiling = (fromIntegral :: Int -> Int8) . (ceiling :: Double -> Int) "round/Double->Int8" round = (fromIntegral :: Int -> Int8) . (round :: Double -> Int) #-} ------------------------------------------------------------------------ -- type Int16 ------------------------------------------------------------------------ -- Int16 is represented in the same way as Int. Operations may assume -- and must ensure that it holds only values from its logical range. data {-# CTYPE "HsInt16" #-} Int16 = I16# Int16# -- ^ 16-bit signed integer type -- See GHC.Classes#matching_overloaded_methods_in_rules -- | @since base-2.01 instance Eq Int16 where (==) = eqInt16 (/=) = neInt16 eqInt16, neInt16 :: Int16 -> Int16 -> Bool eqInt16 (I16# x) (I16# y) = isTrue# ((int16ToInt# x) ==# (int16ToInt# y)) neInt16 (I16# x) (I16# y) = isTrue# ((int16ToInt# x) /=# (int16ToInt# y)) {-# INLINE [1] eqInt16 #-} {-# INLINE [1] neInt16 #-} -- | @since base-2.01 instance Ord Int16 where (<) = ltInt16 (<=) = leInt16 (>=) = geInt16 (>) = gtInt16 {-# INLINE [1] gtInt16 #-} {-# INLINE [1] geInt16 #-} {-# INLINE [1] ltInt16 #-} {-# INLINE [1] leInt16 #-} gtInt16, geInt16, ltInt16, leInt16 :: Int16 -> Int16 -> Bool (I16# x) `gtInt16` (I16# y) = isTrue# (x `gtInt16#` y) (I16# x) `geInt16` (I16# y) = isTrue# (x `geInt16#` y) (I16# x) `ltInt16` (I16# y) = isTrue# (x `ltInt16#` y) (I16# x) `leInt16` (I16# y) = isTrue# (x `leInt16#` y) -- | @since base-2.01 instance Show Int16 where showsPrec p x = showsPrec p (fromIntegral x :: Int) -- | @since base-2.01 instance Num Int16 where (I16# x#) + (I16# y#) = I16# (x# `plusInt16#` y#) (I16# x#) - (I16# y#) = I16# (x# `subInt16#` y#) (I16# x#) * (I16# y#) = I16# (x# `timesInt16#` y#) negate (I16# x#) = I16# (negateInt16# x#) abs x | x >= 0 = x | otherwise = negate x signum x | x > 0 = 1 signum 0 = 0 signum _ = -1 fromInteger i = I16# (intToInt16# (integerToInt# i)) -- | @since base-2.01 instance Real Int16 where toRational x = toInteger x % 1 -- | @since base-2.01 instance Enum Int16 where succ x | x /= maxBound = x + 1 | otherwise = succError "Int16" pred x | x /= minBound = x - 1 | otherwise = predError "Int16" toEnum i@(I# i#) | i >= fromIntegral (minBound::Int16) && i <= fromIntegral (maxBound::Int16) = I16# (intToInt16# i#) | otherwise = toEnumError "Int16" i (minBound::Int16, maxBound::Int16) fromEnum (I16# x#) = I# (int16ToInt# x#) -- See Note [Stable Unfolding for list producers] in GHC.Internal.Enum {-# INLINE enumFrom #-} enumFrom = boundedEnumFrom -- See Note [Stable Unfolding for list producers] in GHC.Internal.Enum {-# INLINE enumFromThen #-} enumFromThen = boundedEnumFromThen -- | @since base-2.01 instance Integral Int16 where quot x@(I16# x#) y@(I16# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I16# (x# `quotInt16#` y#) rem (I16# x#) y@(I16# y#) | y == 0 = divZeroError -- The quotRem CPU instruction might fail for 'minBound -- `quotRem` -1' if it is an instruction for exactly this -- width of signed integer. But, 'minBound `rem` -1' is -- well-defined (0). We therefore special-case it. | y == (-1) = 0 | otherwise = I16# (x# `remInt16#` y#) div x@(I16# x#) y@(I16# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I16# (x# `divInt16#` y#) mod (I16# x#) y@(I16# y#) | y == 0 = divZeroError -- The divMod CPU instruction might fail for 'minBound -- `divMod` -1' if it is an instruction for exactly this -- width of signed integer. But, 'minBound `mod` -1' is -- well-defined (0). We therefore special-case it. | y == (-1) = 0 | otherwise = I16# (x# `modInt16#` y#) quotRem x@(I16# x#) y@(I16# y#) | y == 0 = divZeroError -- See Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = case x# `quotRemInt16#` y# of (# q, r #) -> (I16# q, I16# r) divMod x@(I16# x#) y@(I16# y#) | y == 0 = divZeroError -- See Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = case x# `divModInt16#` y# of (# d, m #) -> (I16# d, I16# m) toInteger (I16# x#) = IS (int16ToInt# x#) -- | @since base-2.01 instance Bounded Int16 where minBound = -0x8000 maxBound = 0x7FFF -- | @since base-2.01 instance Ix Int16 where range (m,n) = [m..n] unsafeIndex (m,_) i = fromIntegral i - fromIntegral m inRange (m,n) i = m <= i && i <= n -- | @since base-2.01 instance Read Int16 where readsPrec p s = [(fromIntegral (x::Int), r) | (x, r) <- readsPrec p s] -- | @since base-2.01 instance Bits Int16 where {-# INLINE shift #-} {-# INLINE bit #-} {-# INLINE testBit #-} {-# INLINE popCount #-} (I16# x#) .&. (I16# y#) = I16# (intToInt16# ((int16ToInt# x#) `andI#` (int16ToInt# y#))) (I16# x#) .|. (I16# y#) = I16# (intToInt16# ((int16ToInt# x#) `orI#` (int16ToInt# y#))) (I16# x#) `xor` (I16# y#) = I16# (intToInt16# ((int16ToInt# x#) `xorI#` (int16ToInt# y#))) complement (I16# x#) = I16# (intToInt16# (notI# (int16ToInt# x#))) (I16# x#) `shift` (I# i#) | isTrue# (i# >=# 0#) = I16# (intToInt16# ((int16ToInt# x#) `iShiftL#` i#)) | otherwise = I16# (intToInt16# ((int16ToInt# x#) `iShiftRA#` negateInt# i#)) (I16# x#) `shiftL` (I# i#) | isTrue# (i# >=# 0#) = I16# (intToInt16# ((int16ToInt# x#) `iShiftL#` i#)) | otherwise = overflowError (I16# x#) `unsafeShiftL` (I# i#) = I16# (intToInt16# ((int16ToInt# x#) `uncheckedIShiftL#` i#)) (I16# x#) `shiftR` (I# i#) | isTrue# (i# >=# 0#) = I16# (intToInt16# ((int16ToInt# x#) `iShiftRA#` i#)) | otherwise = overflowError (I16# x#) `unsafeShiftR` (I# i#) = I16# (intToInt16# ((int16ToInt# x#) `uncheckedIShiftRA#` i#)) (I16# x#) `rotate` (I# i#) | isTrue# (i'# ==# 0#) = I16# x# | otherwise = I16# (intToInt16# (word2Int# ((x'# `uncheckedShiftL#` i'#) `or#` (x'# `uncheckedShiftRL#` (16# -# i'#))))) where !x'# = narrow16Word# (int2Word# (int16ToInt# x#)) !i'# = word2Int# (int2Word# i# `and#` 15##) bitSizeMaybe i = Just (finiteBitSize i) bitSize i = finiteBitSize i isSigned _ = True popCount (I16# x#) = I# (word2Int# (popCnt16# (int2Word# (int16ToInt# x#)))) bit i = bitDefault i testBit a i = testBitDefault a i -- | @since base-4.6.0.0 instance FiniteBits Int16 where {-# INLINE countLeadingZeros #-} {-# INLINE countTrailingZeros #-} finiteBitSize _ = 16 countLeadingZeros (I16# x#) = I# (word2Int# (clz16# (int2Word# (int16ToInt# x#)))) countTrailingZeros (I16# x#) = I# (word2Int# (ctz16# (int2Word# (int16ToInt# x#)))) {-# RULES "properFraction/Float->(Int16,Float)" properFraction = \x -> case properFraction x of { (n, y) -> ((fromIntegral :: Int -> Int16) n, y :: Float) } "truncate/Float->Int16" truncate = (fromIntegral :: Int -> Int16) . (truncate :: Float -> Int) "floor/Float->Int16" floor = (fromIntegral :: Int -> Int16) . (floor :: Float -> Int) "ceiling/Float->Int16" ceiling = (fromIntegral :: Int -> Int16) . (ceiling :: Float -> Int) "round/Float->Int16" round = (fromIntegral :: Int -> Int16) . (round :: Float -> Int) #-} {-# RULES "properFraction/Double->(Int16,Double)" properFraction = \x -> case properFraction x of { (n, y) -> ((fromIntegral :: Int -> Int16) n, y :: Double) } "truncate/Double->Int16" truncate = (fromIntegral :: Int -> Int16) . (truncate :: Double -> Int) "floor/Double->Int16" floor = (fromIntegral :: Int -> Int16) . (floor :: Double -> Int) "ceiling/Double->Int16" ceiling = (fromIntegral :: Int -> Int16) . (ceiling :: Double -> Int) "round/Double->Int16" round = (fromIntegral :: Int -> Int16) . (round :: Double -> Int) #-} ------------------------------------------------------------------------ -- type Int32 ------------------------------------------------------------------------ data {-# CTYPE "HsInt32" #-} Int32 = I32# Int32# -- ^ 32-bit signed integer type -- See GHC.Classes#matching_overloaded_methods_in_rules -- | @since base-2.01 instance Eq Int32 where (==) = eqInt32 (/=) = neInt32 eqInt32, neInt32 :: Int32 -> Int32 -> Bool eqInt32 (I32# x) (I32# y) = isTrue# ((int32ToInt# x) ==# (int32ToInt# y)) neInt32 (I32# x) (I32# y) = isTrue# ((int32ToInt# x) /=# (int32ToInt# y)) {-# INLINE [1] eqInt32 #-} {-# INLINE [1] neInt32 #-} -- | @since base-2.01 instance Ord Int32 where (<) = ltInt32 (<=) = leInt32 (>=) = geInt32 (>) = gtInt32 {-# INLINE [1] gtInt32 #-} {-# INLINE [1] geInt32 #-} {-# INLINE [1] ltInt32 #-} {-# INLINE [1] leInt32 #-} gtInt32, geInt32, ltInt32, leInt32 :: Int32 -> Int32 -> Bool (I32# x) `gtInt32` (I32# y) = isTrue# (x `gtInt32#` y) (I32# x) `geInt32` (I32# y) = isTrue# (x `geInt32#` y) (I32# x) `ltInt32` (I32# y) = isTrue# (x `ltInt32#` y) (I32# x) `leInt32` (I32# y) = isTrue# (x `leInt32#` y) -- | @since base-2.01 instance Show Int32 where showsPrec p x = showsPrec p (fromIntegral x :: Int) -- | @since base-2.01 instance Num Int32 where (I32# x#) + (I32# y#) = I32# (x# `plusInt32#` y#) (I32# x#) - (I32# y#) = I32# (x# `subInt32#` y#) (I32# x#) * (I32# y#) = I32# (x# `timesInt32#` y#) negate (I32# x#) = I32# (negateInt32# x#) abs x | x >= 0 = x | otherwise = negate x signum x | x > 0 = 1 signum 0 = 0 signum _ = -1 fromInteger i = I32# (intToInt32# (integerToInt# i)) -- | @since base-2.01 instance Enum Int32 where succ x | x /= maxBound = x + 1 | otherwise = succError "Int32" pred x | x /= minBound = x - 1 | otherwise = predError "Int32" #if WORD_SIZE_IN_BITS == 32 toEnum (I# i#) = I32# (intToInt32# i#) #else toEnum i@(I# i#) | i >= fromIntegral (minBound::Int32) && i <= fromIntegral (maxBound::Int32) = I32# (intToInt32# i#) | otherwise = toEnumError "Int32" i (minBound::Int32, maxBound::Int32) #endif fromEnum (I32# x#) = I# (int32ToInt# x#) -- See Note [Stable Unfolding for list producers] in GHC.Internal.Enum {-# INLINE enumFrom #-} enumFrom = boundedEnumFrom -- See Note [Stable Unfolding for list producers] in GHC.Internal.Enum {-# INLINE enumFromThen #-} enumFromThen = boundedEnumFromThen -- | @since base-2.01 instance Integral Int32 where quot x@(I32# x#) y@(I32# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I32# (x# `quotInt32#` y#) rem (I32# x#) y@(I32# y#) | y == 0 = divZeroError -- The quotRem CPU instruction might fail for 'minBound -- `quotRem` -1' if it is an instruction for exactly this -- width of signed integer. But, 'minBound `rem` -1' is -- well-defined (0). We therefore special-case it. | y == (-1) = 0 | otherwise = I32# (x# `remInt32#` y#) div x@(I32# x#) y@(I32# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I32# (x# `divInt32#` y#) mod (I32# x#) y@(I32# y#) | y == 0 = divZeroError -- The divMod CPU instruction might fail for 'minBound -- `divMod` -1' if it is an instruction for exactly this -- width of signed integer. But, 'minBound `mod` -1' is -- well-defined (0). We therefore special-case it. | y == (-1) = 0 | otherwise = I32# (x# `modInt32#` y#) quotRem x@(I32# x#) y@(I32# y#) | y == 0 = divZeroError -- See Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = case x# `quotRemInt32#` y# of (# q, r #) -> (I32# q, I32# r) divMod x@(I32# x#) y@(I32# y#) | y == 0 = divZeroError -- See Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = case x# `divModInt32#` y# of (# d, m #) -> (I32# d, I32# m) toInteger (I32# x#) = IS (int32ToInt# x#) -- | @since base-2.01 instance Read Int32 where readsPrec p s = [(fromIntegral (x::Int), r) | (x, r) <- readsPrec p s] -- | @since base-2.01 instance Bits Int32 where {-# INLINE shift #-} {-# INLINE bit #-} {-# INLINE testBit #-} {-# INLINE popCount #-} (I32# x#) .&. (I32# y#) = I32# (intToInt32# ((int32ToInt# x#) `andI#` (int32ToInt# y#))) (I32# x#) .|. (I32# y#) = I32# (intToInt32# ((int32ToInt# x#) `orI#` (int32ToInt# y#))) (I32# x#) `xor` (I32# y#) = I32# (intToInt32# ((int32ToInt# x#) `xorI#` (int32ToInt# y#))) complement (I32# x#) = I32# (intToInt32# (notI# (int32ToInt# x#))) (I32# x#) `shift` (I# i#) | isTrue# (i# >=# 0#) = I32# (intToInt32# ((int32ToInt# x#) `iShiftL#` i#)) | otherwise = I32# (intToInt32# ((int32ToInt# x#) `iShiftRA#` negateInt# i#)) (I32# x#) `shiftL` (I# i#) | isTrue# (i# >=# 0#) = I32# (intToInt32# ((int32ToInt# x#) `iShiftL#` i#)) | otherwise = overflowError (I32# x#) `unsafeShiftL` (I# i#) = I32# (intToInt32# ((int32ToInt# x#) `uncheckedIShiftL#` i#)) (I32# x#) `shiftR` (I# i#) | isTrue# (i# >=# 0#) = I32# (intToInt32# ((int32ToInt# x#) `iShiftRA#` i#)) | otherwise = overflowError (I32# x#) `unsafeShiftR` (I# i#) = I32# (intToInt32# ((int32ToInt# x#) `uncheckedIShiftRA#` i#)) (I32# x#) `rotate` (I# i#) | isTrue# (i'# ==# 0#) = I32# x# | otherwise = I32# (intToInt32# (word2Int# ((x'# `uncheckedShiftL#` i'#) `or#` (x'# `uncheckedShiftRL#` (32# -# i'#))))) where !x'# = narrow32Word# (int2Word# (int32ToInt# x#)) !i'# = word2Int# (int2Word# i# `and#` 31##) bitSizeMaybe i = Just (finiteBitSize i) bitSize i = finiteBitSize i isSigned _ = True popCount (I32# x#) = I# (word2Int# (popCnt32# (int2Word# (int32ToInt# x#)))) bit i = bitDefault i testBit a i = testBitDefault a i -- | @since base-4.6.0.0 instance FiniteBits Int32 where {-# INLINE countLeadingZeros #-} {-# INLINE countTrailingZeros #-} finiteBitSize _ = 32 countLeadingZeros (I32# x#) = I# (word2Int# (clz32# (int2Word# (int32ToInt# x#)))) countTrailingZeros (I32# x#) = I# (word2Int# (ctz32# (int2Word# (int32ToInt# x#)))) {-# RULES "properFraction/Float->(Int32,Float)" properFraction = \x -> case properFraction x of { (n, y) -> ((fromIntegral :: Int -> Int32) n, y :: Float) } "truncate/Float->Int32" truncate = (fromIntegral :: Int -> Int32) . (truncate :: Float -> Int) "floor/Float->Int32" floor = (fromIntegral :: Int -> Int32) . (floor :: Float -> Int) "ceiling/Float->Int32" ceiling = (fromIntegral :: Int -> Int32) . (ceiling :: Float -> Int) "round/Float->Int32" round = (fromIntegral :: Int -> Int32) . (round :: Float -> Int) #-} {-# RULES "properFraction/Double->(Int32,Double)" properFraction = \x -> case properFraction x of { (n, y) -> ((fromIntegral :: Int -> Int32) n, y :: Double) } "truncate/Double->Int32" truncate = (fromIntegral :: Int -> Int32) . (truncate :: Double -> Int) "floor/Double->Int32" floor = (fromIntegral :: Int -> Int32) . (floor :: Double -> Int) "ceiling/Double->Int32" ceiling = (fromIntegral :: Int -> Int32) . (ceiling :: Double -> Int) "round/Double->Int32" round = (fromIntegral :: Int -> Int32) . (round :: Double -> Int) #-} -- | @since base-2.01 instance Real Int32 where toRational x = toInteger x % 1 -- | @since base-2.01 instance Bounded Int32 where minBound = -0x80000000 maxBound = 0x7FFFFFFF -- | @since base-2.01 instance Ix Int32 where range (m,n) = [m..n] unsafeIndex (m,_) i = fromIntegral i - fromIntegral m inRange (m,n) i = m <= i && i <= n ------------------------------------------------------------------------ -- type Int64 ------------------------------------------------------------------------ data {-# CTYPE "HsInt64" #-} Int64 = I64# Int64# -- ^ 64-bit signed integer type -- See GHC.Classes#matching_overloaded_methods_in_rules -- | @since base-2.01 instance Eq Int64 where (==) = eqInt64 (/=) = neInt64 eqInt64, neInt64 :: Int64 -> Int64 -> Bool eqInt64 (I64# x) (I64# y) = isTrue# (x `eqInt64#` y) neInt64 (I64# x) (I64# y) = isTrue# (x `neInt64#` y) {-# INLINE [1] eqInt64 #-} {-# INLINE [1] neInt64 #-} -- | @since base-2.01 instance Ord Int64 where (<) = ltInt64 (<=) = leInt64 (>=) = geInt64 (>) = gtInt64 {-# INLINE [1] gtInt64 #-} {-# INLINE [1] geInt64 #-} {-# INLINE [1] ltInt64 #-} {-# INLINE [1] leInt64 #-} gtInt64, geInt64, ltInt64, leInt64 :: Int64 -> Int64 -> Bool (I64# x) `gtInt64` (I64# y) = isTrue# (x `gtInt64#` y) (I64# x) `geInt64` (I64# y) = isTrue# (x `geInt64#` y) (I64# x) `ltInt64` (I64# y) = isTrue# (x `ltInt64#` y) (I64# x) `leInt64` (I64# y) = isTrue# (x `leInt64#` y) -- | @since base-2.01 instance Show Int64 where showsPrec p x = showsPrec p (toInteger x) -- | @since base-2.01 instance Num Int64 where (I64# x#) + (I64# y#) = I64# (x# `plusInt64#` y#) (I64# x#) - (I64# y#) = I64# (x# `subInt64#` y#) (I64# x#) * (I64# y#) = I64# (x# `timesInt64#` y#) negate (I64# x#) = I64# (negateInt64# x#) abs x | x >= 0 = x | otherwise = negate x signum x | x > 0 = 1 signum 0 = 0 signum _ = -1 fromInteger i = I64# (integerToInt64# i) -- | @since base-2.01 instance Enum Int64 where succ x | x /= maxBound = x + 1 | otherwise = succError "Int64" pred x | x /= minBound = x - 1 | otherwise = predError "Int64" toEnum (I# i#) = I64# (intToInt64# i#) fromEnum x@(I64# x#) | x >= fromIntegral (minBound::Int) && x <= fromIntegral (maxBound::Int) = I# (int64ToInt# x#) | otherwise = fromEnumError "Int64" x -- See Note [Stable Unfolding for list producers] in GHC.Internal.Enum {-# INLINE enumFrom #-} enumFrom (I64# x) = eftInt64 x maxInt64# where !(I64# maxInt64#) = maxBound -- Blarg: technically I guess enumFrom isn't strict! -- See Note [Stable Unfolding for list producers] in GHC.Internal.Enum {-# INLINE enumFromTo #-} enumFromTo (I64# x) (I64# y) = eftInt64 x y -- See Note [Stable Unfolding for list producers] in GHC.Internal.Enum {-# INLINE enumFromThen #-} enumFromThen (I64# x1) (I64# x2) = efdInt64 x1 x2 -- See Note [Stable Unfolding for list producers] in GHC.Internal.Enum {-# INLINE enumFromThenTo #-} enumFromThenTo (I64# x1) (I64# x2) (I64# y) = efdtInt64 x1 x2 y ----------------------------------------------------- -- eftInt64 and eftInt64FB deal with [a..b], which is the -- most common form, so we take a lot of care -- In particular, we have rules for deforestation -- See Note [How the Enum rules work] in GHC.Internal.Enum {-# RULES "eftInt64" [~1] forall x y. eftInt64 x y = build (\ c n -> eftInt64FB c n x y) "eftInt64List" [1] eftInt64FB (:) [] = eftInt64 #-} {-# NOINLINE [1] eftInt64 #-} eftInt64 :: Int64# -> Int64# -> [Int64] -- [x1..x2] eftInt64 x0 y | isTrue# (x0 `gtInt64#` y) = [] | otherwise = go x0 where go x = I64# x : if isTrue# (x `eqInt64#` y) then [] else go (x `plusInt64#` (intToInt64# 1#)) {-# INLINE [0] eftInt64FB #-} -- See Note [Inline FB functions] in GHC.Internal.List eftInt64FB :: (Int64 -> r -> r) -> r -> Int64# -> Int64# -> r eftInt64FB c n x0 y | isTrue# (x0 `gtInt64#` y) = n | otherwise = go x0 where go x = I64# x `c` if isTrue# (x `eqInt64#` y) then n else go (x `plusInt64#` (intToInt64# 1#)) -- Watch out for y=maxBound; hence ==, not > -- Be very careful not to have more than one "c" -- so that when eftInfFB is inlined we can inline -- whatever is bound to "c" ----------------------------------------------------- -- efdInt64 and efdtInt64 deal with [a,b..] and [a,b..c]. -- The code is more complicated because of worries about Int64 overflow. -- See Note [How the Enum rules work] in GHC.Internal.Enum {-# RULES "efdtInt64" [~1] forall x1 x2 y. efdtInt64 x1 x2 y = build (\ c n -> efdtInt64FB c n x1 x2 y) "efdtInt64UpList" [1] efdtInt64FB (:) [] = efdtInt64 #-} efdInt64 :: Int64# -> Int64# -> [Int64] -- [x1,x2..maxInt64] efdInt64 x1 x2 | isTrue# (x2 `geInt64#` x1) = case maxBound of I64# y -> efdtInt64Up x1 x2 y | otherwise = case minBound of I64# y -> efdtInt64Dn x1 x2 y {-# NOINLINE [1] efdtInt64 #-} efdtInt64 :: Int64# -> Int64# -> Int64# -> [Int64] -- [x1,x2..y] efdtInt64 x1 x2 y | isTrue# (x2 `geInt64#` x1) = efdtInt64Up x1 x2 y | otherwise = efdtInt64Dn x1 x2 y {-# INLINE [0] efdtInt64FB #-} -- See Note [Inline FB functions] in GHC.Internal.List efdtInt64FB :: (Int64 -> r -> r) -> r -> Int64# -> Int64# -> Int64# -> r efdtInt64FB c n x1 x2 y | isTrue# (x2 `geInt64#` x1) = efdtInt64UpFB c n x1 x2 y | otherwise = efdtInt64DnFB c n x1 x2 y -- Requires x2 >= x1 efdtInt64Up :: Int64# -> Int64# -> Int64# -> [Int64] efdtInt64Up x1 x2 y -- Be careful about overflow! | isTrue# (y `ltInt64#` x2) = if isTrue# (y `ltInt64#` x1) then [] else [I64# x1] | otherwise = -- Common case: x1 <= x2 <= y let !delta = x2 `subInt64#` x1 -- >= 0 !y' = y `subInt64#` delta -- x1 <= y' <= y; hence y' is representable -- Invariant: x <= y -- Note that: z <= y' => z + delta won't overflow -- so we are guaranteed not to overflow if/when we recurse go_up x | isTrue# (x `gtInt64#` y') = [I64# x] | otherwise = I64# x : go_up (x `plusInt64#` delta) in I64# x1 : go_up x2 -- Requires x2 >= x1 {-# INLINE [0] efdtInt64UpFB #-} -- See Note [Inline FB functions] in GHC.Internal.List efdtInt64UpFB :: (Int64 -> r -> r) -> r -> Int64# -> Int64# -> Int64# -> r efdtInt64UpFB c n x1 x2 y -- Be careful about overflow! | isTrue# (y `ltInt64#` x2) = if isTrue# (y `ltInt64#` x1) then n else I64# x1 `c` n | otherwise = -- Common case: x1 <= x2 <= y let !delta = x2 `subInt64#` x1 -- >= 0 !y' = y `subInt64#` delta -- x1 <= y' <= y; hence y' is representable -- Invariant: x <= y -- Note that: z <= y' => z + delta won't overflow -- so we are guaranteed not to overflow if/when we recurse go_up x | isTrue# (x `gtInt64#` y') = I64# x `c` n | otherwise = I64# x `c` go_up (x `plusInt64#` delta) in I64# x1 `c` go_up x2 -- Requires x2 <= x1 efdtInt64Dn :: Int64# -> Int64# -> Int64# -> [Int64] efdtInt64Dn x1 x2 y -- Be careful about underflow! | isTrue# (y `gtInt64#` x2) = if isTrue# (y `gtInt64#` x1) then [] else [I64# x1] | otherwise = -- Common case: x1 >= x2 >= y let !delta = x2 `subInt64#` x1 -- <= 0 !y' = y `subInt64#` delta -- y <= y' <= x1; hence y' is representable -- Invariant: x >= y -- Note that: z >= y' => z + delta won't underflow -- so we are guaranteed not to underflow if/when we recurse go_dn x | isTrue# (x `ltInt64#` y') = [I64# x] | otherwise = I64# x : go_dn (x `plusInt64#` delta) in I64# x1 : go_dn x2 -- Requires x2 <= x1 {-# INLINE [0] efdtInt64DnFB #-} -- See Note [Inline FB functions] in GHC.Internal.List efdtInt64DnFB :: (Int64 -> r -> r) -> r -> Int64# -> Int64# -> Int64# -> r efdtInt64DnFB c n x1 x2 y -- Be careful about underflow! | isTrue# (y `gtInt64#` x2) = if isTrue# (y `gtInt64#` x1) then n else I64# x1 `c` n | otherwise = -- Common case: x1 >= x2 >= y let !delta = x2 `subInt64#` x1 -- <= 0 !y' = y `subInt64#` delta -- y <= y' <= x1; hence y' is representable -- Invariant: x >= y -- Note that: z >= y' => z + delta won't underflow -- so we are guaranteed not to underflow if/when we recurse go_dn x | isTrue# (x `ltInt64#` y') = I64# x `c` n | otherwise = I64# x `c` go_dn (x `plusInt64#` delta) in I64# x1 `c` go_dn x2 -- | @since base-2.01 instance Integral Int64 where quot x@(I64# x#) y@(I64# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- See Note [Order of tests] | otherwise = I64# (x# `quotInt64#` y#) rem (I64# x#) y@(I64# y#) | y == 0 = divZeroError -- The quotRem CPU instruction might fail for 'minBound -- `quotRem` -1' if it is an instruction for exactly this -- width of signed integer. But, 'minBound `rem` -1' is -- well-defined (0). We therefore special-case it. | y == (-1) = 0 | otherwise = I64# (x# `remInt64#` y#) div x@(I64# x#) y@(I64# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- See Note [Order of tests] | otherwise = I64# (x# `divInt64#` y#) mod (I64# x#) y@(I64# y#) | y == 0 = divZeroError -- The divMod CPU instruction might fail for 'minBound -- `divMod` -1' if it is an instruction for exactly this -- width of signed integer. But, 'minBound `mod` -1' is -- well-defined (0). We therefore special-case it. | y == (-1) = 0 | otherwise = I64# (x# `modInt64#` y#) quotRem x@(I64# x#) y@(I64# y#) | y == 0 = divZeroError -- See Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) #if WORD_SIZE_IN_BITS < 64 -- we don't have quotRemInt64# primop yet | otherwise = (I64# (x# `quotInt64#` y#), I64# (x# `remInt64#` y#)) #else | otherwise = case quotRemInt# (int64ToInt# x#) (int64ToInt# y#) of (# q, r #) -> (I64# (intToInt64# q), I64# (intToInt64# r)) #endif divMod x@(I64# x#) y@(I64# y#) | y == 0 = divZeroError -- See Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) #if WORD_SIZE_IN_BITS < 64 -- we don't have divModInt64# primop yet | otherwise = (I64# (x# `divInt64#` y#), I64# (x# `modInt64#` y#)) #else | otherwise = case divModInt# (int64ToInt# x#) (int64ToInt# y#) of (# q, r #) -> (I64# (intToInt64# q), I64# (intToInt64# r)) #endif toInteger (I64# x) = integerFromInt64# x divInt64#, modInt64# :: Int64# -> Int64# -> Int64# -- Define div in terms of quot, being careful to avoid overflow (#7233) x# `divInt64#` y# | isTrue# (x# `gtInt64#` zero) && isTrue# (y# `ltInt64#` zero) = ((x# `subInt64#` one) `quotInt64#` y#) `subInt64#` one | isTrue# (x# `ltInt64#` zero) && isTrue# (y# `gtInt64#` zero) = ((x# `plusInt64#` one) `quotInt64#` y#) `subInt64#` one | otherwise = x# `quotInt64#` y# where !zero = intToInt64# 0# !one = intToInt64# 1# x# `modInt64#` y# | isTrue# (x# `gtInt64#` zero) && isTrue# (y# `ltInt64#` zero) || isTrue# (x# `ltInt64#` zero) && isTrue# (y# `gtInt64#` zero) = if isTrue# (r# `neInt64#` zero) then r# `plusInt64#` y# else zero | otherwise = r# where !zero = intToInt64# 0# !r# = x# `remInt64#` y# -- | @since base-2.01 instance Read Int64 where readsPrec p s = [(fromInteger x, r) | (x, r) <- readsPrec p s] -- | @since base-2.01 instance Bits Int64 where {-# INLINE shift #-} {-# INLINE bit #-} {-# INLINE testBit #-} {-# INLINE popCount #-} (I64# x#) .&. (I64# y#) = I64# (word64ToInt64# (int64ToWord64# x# `and64#` int64ToWord64# y#)) (I64# x#) .|. (I64# y#) = I64# (word64ToInt64# (int64ToWord64# x# `or64#` int64ToWord64# y#)) (I64# x#) `xor` (I64# y#) = I64# (word64ToInt64# (int64ToWord64# x# `xor64#` int64ToWord64# y#)) complement (I64# x#) = I64# (word64ToInt64# (not64# (int64ToWord64# x#))) (I64# x#) `shift` (I# i#) | isTrue# (i# >=# 0#) = I64# (x# `shiftLInt64#` i#) | otherwise = I64# (x# `shiftRAInt64#` negateInt# i#) (I64# x#) `shiftL` (I# i#) | isTrue# (i# >=# 0#) = I64# (x# `shiftLInt64#` i#) | otherwise = overflowError (I64# x#) `unsafeShiftL` (I# i#) = I64# (x# `uncheckedIShiftL64#` i#) (I64# x#) `shiftR` (I# i#) | isTrue# (i# >=# 0#) = I64# (x# `shiftRAInt64#` i#) | otherwise = overflowError (I64# x#) `unsafeShiftR` (I# i#) = I64# (x# `uncheckedIShiftRA64#` i#) (I64# x#) `rotate` (I# i#) | isTrue# (i'# ==# 0#) = I64# x# | otherwise = I64# (word64ToInt64# ((x'# `uncheckedShiftL64#` i'#) `or64#` (x'# `uncheckedShiftRL64#` (64# -# i'#)))) where !x'# = int64ToWord64# x# !i'# = word2Int# (int2Word# i# `and#` 63##) bitSizeMaybe i = Just (finiteBitSize i) bitSize i = finiteBitSize i isSigned _ = True popCount (I64# x#) = I# (word2Int# (popCnt64# (int64ToWord64# x#))) bit i = bitDefault i testBit a i = testBitDefault a i -- No RULES for RealFrac methods if Int is smaller than Int64, we can't -- go through Int and whether going through Integer is faster is uncertain. #if WORD_SIZE_IN_BITS == 64 {-# RULES "properFraction/Float->(Int64,Float)" properFraction = \x -> case properFraction x of { (n, y) -> ((fromIntegral :: Int -> Int64) n, y :: Float) } "truncate/Float->Int64" truncate = (fromIntegral :: Int -> Int64) . (truncate :: Float -> Int) "floor/Float->Int64" floor = (fromIntegral :: Int -> Int64) . (floor :: Float -> Int) "ceiling/Float->Int64" ceiling = (fromIntegral :: Int -> Int64) . (ceiling :: Float -> Int) "round/Float->Int64" round = (fromIntegral :: Int -> Int64) . (round :: Float -> Int) #-} {-# RULES "properFraction/Double->(Int64,Double)" properFraction = \x -> case properFraction x of { (n, y) -> ((fromIntegral :: Int -> Int64) n, y :: Double) } "truncate/Double->Int64" truncate = (fromIntegral :: Int -> Int64) . (truncate :: Double -> Int) "floor/Double->Int64" floor = (fromIntegral :: Int -> Int64) . (floor :: Double -> Int) "ceiling/Double->Int64" ceiling = (fromIntegral :: Int -> Int64) . (ceiling :: Double -> Int) "round/Double->Int64" round = (fromIntegral :: Int -> Int64) . (round :: Double -> Int) #-} #endif -- | @since base-4.6.0.0 instance FiniteBits Int64 where {-# INLINE countLeadingZeros #-} {-# INLINE countTrailingZeros #-} finiteBitSize _ = 64 countLeadingZeros (I64# x#) = I# (word2Int# (clz64# (int64ToWord64# x#))) countTrailingZeros (I64# x#) = I# (word2Int# (ctz64# (int64ToWord64# x#))) -- | @since base-2.01 instance Real Int64 where toRational x = toInteger x % 1 -- | @since base-2.01 instance Bounded Int64 where minBound = -0x8000000000000000 maxBound = 0x7FFFFFFFFFFFFFFF -- | @since base-2.01 instance Ix Int64 where range (m,n) = [m..n] unsafeIndex (m,_) i = fromIntegral i - fromIntegral m inRange (m,n) i = m <= i && i <= n ------------------------------------------------------------------------------- {- Note [Order of tests] ~~~~~~~~~~~~~~~~~~~~~ (See #3065, #5161.) Suppose we had a definition like: quot x y | y == 0 = divZeroError | x == minBound && y == (-1) = overflowError | otherwise = x `primQuot` y Note in particular that the x == minBound test comes before the y == (-1) test. this expands to something like: case y of 0 -> divZeroError _ -> case x of -9223372036854775808 -> case y of -1 -> overflowError _ -> x `primQuot` y _ -> x `primQuot` y Now if we have the call (x `quot` 2), and quot gets inlined, then we get: case 2 of 0 -> divZeroError _ -> case x of -9223372036854775808 -> case 2 of -1 -> overflowError _ -> x `primQuot` 2 _ -> x `primQuot` 2 which simplifies to: case x of -9223372036854775808 -> x `primQuot` 2 _ -> x `primQuot` 2 Now we have a case with two identical branches, which would be eliminated (assuming it doesn't affect strictness, which it doesn't in this case), leaving the desired: x `primQuot` 2 except in the minBound branch we know what x is, and GHC cleverly does the division at compile time, giving: case x of -9223372036854775808 -> -4611686018427387904 _ -> x `primQuot` 2 So instead we use a definition like: quot x y | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError | otherwise = x `primQuot` y which gives us: case y of 0 -> divZeroError -1 -> case x of -9223372036854775808 -> overflowError _ -> x `primQuot` y _ -> x `primQuot` y for which our call (x `quot` 2) expands to: case 2 of 0 -> divZeroError -1 -> case x of -9223372036854775808 -> overflowError _ -> x `primQuot` 2 _ -> x `primQuot` 2 which simplifies to: x `primQuot` 2 as required. But we now have the same problem with a constant numerator: the call (2 `quot` y) expands to case y of 0 -> divZeroError -1 -> case 2 of -9223372036854775808 -> overflowError _ -> 2 `primQuot` y _ -> 2 `primQuot` y which simplifies to: case y of 0 -> divZeroError -1 -> 2 `primQuot` y _ -> 2 `primQuot` y which simplifies to: case y of 0 -> divZeroError -1 -> -2 _ -> 2 `primQuot` y However, constant denominators are more common than constant numerators, so the y == (-1) && x == minBound order gives us better code in the common case. -} ------------------------------------------------------------------------------- -- unchecked shift primops may be lowered into C shift operations which have -- unspecified behaviour if the amount of bits to shift is greater or equal to the word -- size in bits. -- The following safe shift operations wrap unchecked primops to take this into -- account: 0 is consistently returned when the shift amount is too big. shiftRLInt8# :: Int8# -> Int# -> Int8# a `shiftRLInt8#` b = uncheckedShiftRLInt8# a b `andInt8#` intToInt8# (shift_mask 8# b) shiftRLInt16# :: Int16# -> Int# -> Int16# a `shiftRLInt16#` b = uncheckedShiftRLInt16# a b `andInt16#` intToInt16# (shift_mask 16# b) shiftRLInt32# :: Int32# -> Int# -> Int32# a `shiftRLInt32#` b = uncheckedShiftRLInt32# a b `andInt32#` intToInt32# (shift_mask 32# b) shiftLInt64# :: Int64# -> Int# -> Int64# a `shiftLInt64#` b = uncheckedIShiftL64# a b `andInt64#` intToInt64# (shift_mask 64# b) shiftRAInt64# :: Int64# -> Int# -> Int64# a `shiftRAInt64#` b | isTrue# (b >=# 64#) = intToInt64# (negateInt# (a `ltInt64#` (intToInt64# 0#))) | otherwise = a `uncheckedIShiftRA64#` b andInt8# :: Int8# -> Int8# -> Int8# x `andInt8#` y = word8ToInt8# (int8ToWord8# x `andWord8#` int8ToWord8# y) andInt16# :: Int16# -> Int16# -> Int16# x `andInt16#` y = word16ToInt16# (int16ToWord16# x `andWord16#` int16ToWord16# y) andInt32# :: Int32# -> Int32# -> Int32# x `andInt32#` y = word32ToInt32# (int32ToWord32# x `andWord32#` int32ToWord32# y) andInt64# :: Int64# -> Int64# -> Int64# x `andInt64#` y = word64ToInt64# (int64ToWord64# x `and64#` int64ToWord64# y)