module Text.Grampa.ContextFree.LeftRecursive (Fixed, Parser, SeparatedParser(..), longest, peg, terminalPEG,
parseSeparated, separated, (<<|>))
where
import Control.Applicative
import Control.Monad (Monad(..), MonadPlus(..))
import Control.Monad.Trans.State.Lazy (State, evalState, get, put)
import Data.Char (isSpace)
import Data.Functor.Compose (Compose(..))
import Data.Maybe (isJust)
import Data.Monoid (Monoid(mempty), All(..), Any(..), (<>))
import Data.Monoid.Null (MonoidNull(null))
import Data.Monoid.Factorial (FactorialMonoid)
import Data.Monoid.Textual (TextualMonoid)
import qualified Data.Monoid.Factorial as Factorial
import qualified Data.Monoid.Textual as Textual
import Data.String (fromString)
import qualified Text.Parser.Char
import Text.Parser.Char (CharParsing)
import Text.Parser.Combinators (Parsing(..))
import Text.Parser.LookAhead (LookAheadParsing(..))
import Text.Parser.Token (TokenParsing(someSpace))
import qualified Rank2
import Text.Grampa.Class (GrammarParsing(..), MonoidParsing(..), MultiParsing(..), ParseResults)
import Text.Grampa.Internal (BinTree(EmptyTree))
import Text.Grampa.ContextFree.Memoizing (ResultList(..), fromResultList)
import qualified Text.Grampa.ContextFree.Memoizing as Memoizing
import qualified Text.Grampa.PEG.Backtrack.Measured as Backtrack
import Prelude hiding (cycle, null, span, takeWhile)
type Parser = Fixed Memoizing.Parser
data Fixed p g s a =
Parser {
complete, direct, direct0, direct1, indirect :: p g s a,
cyclicDescendants :: Rank2.Apply g => g (Const (ParserFlags g)) -> ParserFlags g}
| DirectParser {
complete, direct0, direct1 :: p g s a}
| PositiveDirectParser {
complete :: p g s a}
data SeparatedParser p g s a = FrontParser (p g s a)
| CycleParser {
cycleParser :: p g s a,
backParser :: p g s a,
dependencies :: g (Const Bool)}
| BackParser {
backParser :: p g s a}
data ParserFlags g = ParserFlags {
nullable :: Bool,
dependsOn :: g (Const Bool)}
deriving instance Show (g (Const Bool)) => Show (ParserFlags g)
data ParserFunctor g s a = ParserResultsFunctor {parserResults :: ResultList g s a}
| ParserFlagsFunctor {parserFlags :: ParserFlags g}
newtype Union (g :: (* -> *) -> *) = Union{getUnion :: g (Const Bool)}
instance (Rank2.Apply g, Rank2.Distributive g) => Monoid (Union g) where
mempty = Union (Rank2.distributeWith (Const . getConst) (Const False))
mappend (Union g1) (Union g2) = Union (Rank2.liftA2 union g1 g2)
general, general' :: Alternative (p g s) => Fixed p g s a -> Fixed p g s a
general p = Parser{
complete= complete p,
direct = direct p',
direct0= direct0 p',
direct1= direct1 p',
indirect= indirect p',
cyclicDescendants= cyclicDescendants p'}
where p' = general' p
general' p@PositiveDirectParser{} = Parser{
complete= complete p,
direct = complete p,
direct0= empty,
direct1= complete p,
indirect= empty,
cyclicDescendants= \cd-> ParserFlags False (const (Const False) Rank2.<$> cd)}
general' p@DirectParser{} = Parser{
complete= complete p,
direct = complete p,
direct0= direct0 p,
direct1= direct1 p,
indirect= empty,
cyclicDescendants= \cd-> ParserFlags True (const (Const False) Rank2.<$> cd)}
general' p@Parser{} = p
instance MultiParsing (Fixed Memoizing.Parser) where
type GrammarConstraint (Fixed Memoizing.Parser) g = (Rank2.Apply g, Rank2.Distributive g, Rank2.Traversable g)
type ResultFunctor (Fixed Memoizing.Parser) = Compose ParseResults []
parsePrefix :: (Rank2.Apply g, Rank2.Distributive g, Rank2.Traversable g, FactorialMonoid s) =>
g (Parser g s) -> s -> g (Compose (Compose ParseResults []) ((,) s))
parsePrefix g input = Rank2.fmap (Compose . Compose . fromResultList input)
(snd $ head $ parseRecursive g input)
parseComplete :: (FactorialMonoid s, Rank2.Apply g, Rank2.Distributive g, Rank2.Traversable g) =>
g (Parser g s) -> s -> g (Compose ParseResults [])
parseComplete g input = Rank2.fmap ((snd <$>) . Compose . fromResultList input)
(snd $ head $ Memoizing.reparseTails close $ parseRecursive g input)
where close = Rank2.fmap (<* endOfInput) selfReferring
instance GrammarParsing (Fixed Memoizing.Parser) where
type GrammarFunctor (Fixed Memoizing.Parser) = ParserFunctor
nonTerminal :: forall g s a. (Rank2.Apply g, Rank2.Distributive g, Rank2.Traversable g)
=> (g (ParserFunctor g s) -> ParserFunctor g s a) -> Parser g s a
nonTerminal f = Parser{
complete= ind,
direct= empty,
direct0= empty,
direct1= empty,
indirect= ind,
cyclicDescendants= parserFlags . f . Rank2.fmap (ParserFlagsFunctor . getConst) . addSelf}
where ind = nonTerminal (parserResults . f . Rank2.fmap ParserResultsFunctor)
addSelf g = Rank2.liftA2 adjust bits g
adjust :: forall b. Const (g (Const Bool)) b -> Const (ParserFlags g) b -> Const (ParserFlags g) b
adjust (Const bit) (Const (ParserFlags n d)) =
Const ParserFlags{
nullable= n,
dependsOn= Rank2.liftA2 union bit d}
recursive = general
bits :: forall (g :: (* -> *) -> *). (Rank2.Distributive g, Rank2.Traversable g) => g (Const (g (Const Bool)))
bits = start `seq` Rank2.fmap oneBit start
where start = evalState (Rank2.traverse next (Rank2.distributeJoin Nothing)) 0
oneBit :: Const Int a -> Const (g (Const Bool)) a
next :: f a -> State Int (Const Int a)
oneBit (Const i) = Const (Rank2.fmap (Const . (i ==) . getConst) start)
next _ = do {i <- get; let {i' = succ i}; seq i' (put i'); return (Const i)}
instance Functor (p g s) => Functor (Fixed p g s) where
fmap f (PositiveDirectParser p) = PositiveDirectParser (fmap f p)
fmap f p@DirectParser{} = DirectParser{
complete= fmap f (complete p),
direct0= fmap f (direct0 p),
direct1= fmap f (direct1 p)}
fmap f p@Parser{} = p{
complete= fmap f (complete p),
direct= fmap f (direct p),
direct0= fmap f (direct0 p),
direct1= fmap f (direct1 p),
indirect= fmap f (indirect p)}
instance Alternative (p g s) => Applicative (Fixed p g s) where
pure a = DirectParser{complete= pure a,
direct0= pure a,
direct1= empty}
p@PositiveDirectParser{} <*> q = PositiveDirectParser{
complete= complete p <*> complete q}
p@DirectParser{} <*> q@PositiveDirectParser{} = PositiveDirectParser{
complete= complete p <*> complete q}
p@DirectParser{} <*> q@DirectParser{} = DirectParser{
complete= complete p <*> complete q,
direct0= direct0 p <*> direct0 q,
direct1= direct0 p <*> direct1 q <|> direct1 p <*> complete q}
p <*> q@Parser{} = Parser{
complete= complete p' <*> complete q,
direct= direct0 p' <*> direct q <|> direct1 p' <*> complete q,
direct0= direct0 p' <*> direct0 q,
direct1= direct0 p' <*> direct1 q <|> direct1 p' <*> complete q,
indirect= direct0 p' <*> indirect q <|> indirect p' <*> complete q,
cyclicDescendants= \deps-> let
pcd@(ParserFlags pn pd) = cyclicDescendants p' deps
ParserFlags qn qd = cyclicDescendants q deps
in if pn
then ParserFlags qn (Rank2.liftA2 union pd qd)
else pcd}
where p'@Parser{} = general' p
p <*> q = Parser{
complete= complete p' <*> complete q',
direct= direct p' <*> complete q',
direct0= direct0 p' <*> direct0 q',
direct1= direct0 p' <*> direct1 q' <|> direct1 p' <*> complete q',
indirect= indirect p' <*> complete q',
cyclicDescendants= \deps-> let
pcd@(ParserFlags pn pd) = cyclicDescendants p' deps
ParserFlags qn qd = cyclicDescendants q' deps
in if pn
then ParserFlags qn (Rank2.liftA2 union pd qd)
else pcd}
where p'@Parser{} = general' p
q'@Parser{} = general' q
instance Alternative (p g s) => Alternative (Fixed p g s) where
empty = PositiveDirectParser{complete= empty}
p@PositiveDirectParser{} <|> q@PositiveDirectParser{} = PositiveDirectParser{complete= complete p <|> complete q}
p@PositiveDirectParser{} <|> q@DirectParser{} = DirectParser{
complete= complete p <|> complete q,
direct0 = direct0 q,
direct1= complete p <|> direct1 q}
p@DirectParser{} <|> q@PositiveDirectParser{} = DirectParser{
complete= complete p <|> complete q,
direct0 = direct0 p,
direct1= direct1 p <|> complete q}
p@DirectParser{} <|> q@DirectParser{} = DirectParser{
complete= complete p <|> complete q,
direct0 = direct0 p <|> direct0 q,
direct1= direct1 p <|> direct1 q}
p <|> q = Parser{complete= complete p' <|> complete q',
direct= direct p' <|> direct q',
direct0= direct0 p' <|> direct0 q',
direct1= direct1 p' <|> direct1 q',
indirect= indirect p' <|> indirect q',
cyclicDescendants= \deps-> let
ParserFlags pn pd = cyclicDescendants p' deps
ParserFlags qn qd = cyclicDescendants q' deps
in ParserFlags (pn || qn) (Rank2.liftA2 union pd qd)}
where p'@Parser{} = general p
q'@Parser{} = general q
many (PositiveDirectParser p) = DirectParser{
complete= many p,
direct0= pure [],
direct1= some p}
many p@DirectParser{} = DirectParser{
complete= many (complete p),
direct0= pure [] <|> (:[]) <$> direct0 p,
direct1= (:) <$> direct1 p <*> many (complete p)}
many p@Parser{} = Parser{
complete= mcp,
direct= d0 <|> d1,
direct0= d0,
direct1= d1,
indirect= (:) <$> indirect p <*> mcp,
cyclicDescendants= \deps-> (cyclicDescendants p deps){nullable= True}}
where d0 = pure [] <|> (:[]) <$> direct0 p
d1 = (:) <$> direct1 p <*> mcp
mcp = many (complete p)
some (PositiveDirectParser p) = PositiveDirectParser{complete= some p}
some p@DirectParser{} = DirectParser{
complete= some (complete p),
direct0= (:[]) <$> direct0 p,
direct1= (:) <$> direct1 p <*> many (complete p)}
some p@Parser{} = Parser{
complete= some (complete p),
direct= d0 <|> d1,
direct0= d0,
direct1= d1,
indirect= (:) <$> indirect p <*> many (complete p),
cyclicDescendants= cyclicDescendants p}
where d0 = (:[]) <$> direct0 p
d1= (:) <$> direct1 p <*> many (complete p)
infixl 3 <<|>
(<<|>) :: Parser g s a -> Parser g s a -> Parser g s a
p@DirectParser{} <<|> q@PositiveDirectParser{} = DirectParser{
complete= complete p Memoizing.<<|> complete q,
direct0 = direct0 p,
direct1= direct1 p Memoizing.<<|> complete q}
p@DirectParser{} <<|> q@DirectParser{} = DirectParser{
complete= complete p Memoizing.<<|> complete q,
direct0 = direct0 p Memoizing.<<|> direct0 q,
direct1= direct1 p Memoizing.<<|> direct1 q}
p <<|> q = Parser{complete= complete p' Memoizing.<<|> complete q',
direct= direct p' Memoizing.<<|> direct q',
direct0= direct0 p' Memoizing.<<|> direct0 q',
direct1= direct1 p' Memoizing.<<|> direct1 q',
indirect= indirect p' Memoizing.<<|> indirect q',
cyclicDescendants= \deps-> let
ParserFlags pn pd = cyclicDescendants p' deps
ParserFlags qn qd = cyclicDescendants q' deps
in ParserFlags (pn || qn) (Rank2.liftA2 union pd qd)}
where p'@Parser{} = general p
q'@Parser{} = general q
union :: Const Bool x -> Const Bool x -> Const Bool x
union (Const False) d = d
union (Const True) _ = Const True
instance (Alternative (p g s), Monad (p g s)) => Monad (Fixed p g s) where
return = pure
(>>) = (*>)
PositiveDirectParser p >>= cont = PositiveDirectParser (p >>= complete . cont)
p@DirectParser{} >>= cont = Parser{
complete= complete p >>= complete . cont,
direct= d0 <|> d1,
direct0= d0,
direct1= d1,
indirect= direct0 p >>= indirect . general' . cont,
cyclicDescendants= \cd-> (ParserFlags True $ Rank2.fmap (const $ Const True) cd)}
where d0 = direct0 p >>= direct0 . general' . cont
d1 = (direct0 p >>= direct1 . general' . cont) <|> (direct1 p >>= complete . cont)
p >>= cont = Parser{
complete= complete p >>= complete . cont,
direct= d0 <|> d1,
direct0= d0,
direct1= d1,
indirect= (indirect p >>= complete . cont) <|> (direct0 p >>= indirect . general' . cont),
cyclicDescendants= \cd-> (ParserFlags True $ Rank2.fmap (const $ Const True) cd)}
where d0 = direct0 p >>= direct0 . general' . cont
d1 = (direct0 p >>= direct1 . general' . cont) <|> (direct1 p >>= complete . cont)
instance MonadPlus (p g s) => MonadPlus (Fixed p g s) where
mzero = empty
mplus = (<|>)
instance (Alternative (p g s), Monoid x) => Monoid (Fixed p g s x) where
mempty = pure mempty
mappend = liftA2 mappend
primitive :: String -> p g s a -> p g s a -> p g s a -> Fixed p g s a
primitive _name d0 d1 d = DirectParser{complete= d,
direct0= d0,
direct1= d1}
positivePrimitive :: String -> p g s a -> Fixed p g s a
positivePrimitive _name p = PositiveDirectParser{complete= p}
instance (LookAheadParsing (p g s), MonoidParsing (Fixed p g)) => Parsing (Fixed p g s) where
eof = primitive "eof" eof empty eof
try (PositiveDirectParser p) = PositiveDirectParser (try p)
try p@DirectParser{} = DirectParser{
complete= try (complete p),
direct0= try (direct0 p),
direct1= try (direct1 p)}
try p@Parser{} = p{
complete= try (complete p),
direct= try (direct p),
direct0= try (direct0 p),
direct1= try (direct1 p),
indirect= try (indirect p)}
PositiveDirectParser p <?> msg = PositiveDirectParser (p <?> msg)
p@DirectParser{} <?> msg = DirectParser{
complete= complete p <?> msg,
direct0= direct0 p <?> msg,
direct1= direct1 p <?> msg}
p@Parser{} <?> msg = p{
complete= complete p <?> msg,
direct= direct p <?> msg,
direct0= direct0 p <?> msg,
direct1= direct1 p <?> msg,
indirect= indirect p <?> msg}
notFollowedBy p@PositiveDirectParser{} = DirectParser{
complete= notFollowedBy (complete p),
direct0= notFollowedBy (complete p),
direct1= empty}
notFollowedBy p@DirectParser{} = DirectParser{
complete= notFollowedBy (complete p),
direct0= notFollowedBy (complete p),
direct1= empty}
notFollowedBy p@Parser{} = Parser{
complete= notFollowedBy (complete p),
direct= notFollowedBy (direct p),
direct0= notFollowedBy (direct p),
direct1= empty,
indirect= notFollowedBy (indirect p),
cyclicDescendants= \deps-> (cyclicDescendants p deps){nullable= True}}
unexpected msg = positivePrimitive "unexpected" (unexpected msg)
skipMany p = concatMany (() <$ p)
instance (LookAheadParsing (p g s), MonoidParsing (Fixed p g)) => LookAheadParsing (Fixed p g s) where
lookAhead p@PositiveDirectParser{} = DirectParser{
complete= lookAhead (complete p),
direct0= lookAhead (complete p),
direct1= empty}
lookAhead p@DirectParser{} = DirectParser{
complete= lookAhead (complete p),
direct0= lookAhead (complete p),
direct1= empty}
lookAhead p@Parser{} = Parser{
complete= lookAhead (complete p),
direct= lookAhead (direct p),
direct0= lookAhead (direct p),
direct1= empty,
indirect= lookAhead (indirect p),
cyclicDescendants= \deps-> (cyclicDescendants p deps){nullable= True}}
instance MonoidParsing (Fixed Memoizing.Parser g) where
endOfInput = primitive "endOfInput" endOfInput empty endOfInput
getInput = primitive "getInput" (endOfInput *> getInput) (notFollowedBy endOfInput *> getInput) getInput
anyToken = positivePrimitive "anyToken" anyToken
token x = positivePrimitive "token" (token x)
satisfy predicate = positivePrimitive "satisfy" (satisfy predicate)
satisfyChar predicate = positivePrimitive "satisfyChar" (satisfyChar predicate)
satisfyCharInput predicate = positivePrimitive "satisfyCharInput" (satisfyCharInput predicate)
notSatisfy predicate = primitive "notSatisfy" (notSatisfy predicate) empty (notSatisfy predicate)
notSatisfyChar predicate = primitive "notSatisfyChar" (notSatisfyChar predicate) empty (notSatisfyChar predicate)
scan s0 f = primitive "scan" (mempty <$ notSatisfy test) (lookAhead (satisfy test) *> p) p
where p = scan s0 f
test = isJust . f s0
scanChars s0 f = primitive "scanChars" (mempty <$ notSatisfyChar test) (lookAhead (satisfyChar test) *> p) p
where p = scanChars s0 f
test = isJust . f s0
string s
| null s = primitive ("(string " ++ shows s ")") (string s) empty (string s)
| otherwise = positivePrimitive ("(string " ++ shows s ")") (string s)
takeWhile predicate = primitive "takeWhile" (mempty <$ notSatisfy predicate)
(takeWhile1 predicate) (takeWhile predicate)
takeWhile1 predicate = positivePrimitive "takeWhile1" (takeWhile1 predicate)
takeCharsWhile predicate = primitive "takeCharsWhile" (mempty <$ notSatisfyChar predicate)
(takeCharsWhile1 predicate) (takeCharsWhile predicate)
takeCharsWhile1 predicate = positivePrimitive "takeCharsWhile1" (takeCharsWhile1 predicate)
whiteSpace = primitive "whiteSpace" (notSatisfyChar isSpace) (satisfyChar isSpace *> whiteSpace) whiteSpace
concatMany p@PositiveDirectParser{} = DirectParser{
complete= cmp,
direct0= d0,
direct1= d1}
where d0 = pure mempty
d1 = (<>) <$> complete p <*> cmp
cmp = concatMany (complete p)
concatMany p@DirectParser{} = DirectParser{
complete= cmp,
direct0= d0,
direct1= d1}
where d0 = pure mempty <|> direct0 p
d1 = (<>) <$> direct1 p <*> cmp
cmp = concatMany (complete p)
concatMany p@Parser{} = Parser{
complete= cmp,
direct= d0 <|> d1,
direct0= d0,
direct1= d1,
indirect= (<>) <$> indirect p <*> cmp,
cyclicDescendants= \deps-> (cyclicDescendants p deps){nullable= True}}
where d0 = pure mempty <|> direct0 p
d1 = (<>) <$> direct1 p <*> cmp
cmp = concatMany (complete p)
instance MonoidParsing (Fixed Backtrack.Parser g) where
endOfInput = primitive "endOfInput" endOfInput empty endOfInput
getInput = primitive "getInput" (endOfInput *> getInput) (notFollowedBy endOfInput *> getInput) getInput
anyToken = positivePrimitive "anyToken" anyToken
token x = positivePrimitive "token" (token x)
satisfy predicate = positivePrimitive "satisfy" (satisfy predicate)
satisfyChar predicate = positivePrimitive "satisfyChar" (satisfyChar predicate)
satisfyCharInput predicate = positivePrimitive "satisfyCharInput" (satisfyCharInput predicate)
notSatisfy predicate = primitive "notSatisfy" (notSatisfy predicate) empty (notSatisfy predicate)
notSatisfyChar predicate = primitive "notSatisfyChar" (notSatisfyChar predicate) empty (notSatisfyChar predicate)
scan s0 f = primitive "scan" (mempty <$ notSatisfy test) (lookAhead (satisfy test) *> p) p
where p = scan s0 f
test = isJust . f s0
scanChars s0 f = primitive "scanChars" (mempty <$ notSatisfyChar test) (lookAhead (satisfyChar test) *> p) p
where p = scanChars s0 f
test = isJust . f s0
string s
| null s = primitive ("(string " ++ shows s ")") (string s) empty (string s)
| otherwise = positivePrimitive ("(string " ++ shows s ")") (string s)
takeWhile predicate = primitive "takeWhile" (mempty <$ notSatisfy predicate)
(takeWhile1 predicate) (takeWhile predicate)
takeWhile1 predicate = positivePrimitive "takeWhile1" (takeWhile1 predicate)
takeCharsWhile predicate = primitive "takeCharsWhile" (mempty <$ notSatisfyChar predicate)
(takeCharsWhile1 predicate) (takeCharsWhile predicate)
takeCharsWhile1 predicate = positivePrimitive "takeCharsWhile1" (takeCharsWhile1 predicate)
whiteSpace = primitive "whiteSpace" (notSatisfyChar isSpace) (satisfyChar isSpace *> whiteSpace) whiteSpace
concatMany p@PositiveDirectParser{} = DirectParser{
complete= cmp,
direct0= d0,
direct1= d1}
where d0 = pure mempty
d1 = (<>) <$> complete p <*> cmp
cmp = concatMany (complete p)
concatMany p@DirectParser{} = DirectParser{
complete= cmp,
direct0= d0,
direct1= d1}
where d0 = pure mempty `Backtrack.alt` direct0 p
d1 = (<>) <$> direct1 p <*> cmp
cmp = concatMany (complete p)
concatMany p@Parser{} = Parser{
complete= cmp,
direct= d0 `Backtrack.alt` d1,
direct0= d0,
direct1= d1,
indirect= (<>) <$> indirect p <*> cmp,
cyclicDescendants= \deps-> (cyclicDescendants p deps){nullable= True}}
where d0 = pure mempty `Backtrack.alt` direct0 p
d1 = (<>) <$> direct1 p <*> cmp
cmp = concatMany (complete p)
instance (LookAheadParsing (p g s), MonoidParsing (Fixed p g), Show s, TextualMonoid s) =>
CharParsing (Fixed p g s) where
satisfy = satisfyChar
string s = Textual.toString (error "unexpected non-character") <$> string (fromString s)
char = satisfyChar . (==)
notChar = satisfyChar . (/=)
anyChar = satisfyChar (const True)
text t = (fromString . Textual.toString (error "unexpected non-character")) <$> string (Textual.fromText t)
instance (LookAheadParsing (p g s), TokenParsing (p g s), MonoidParsing (Fixed p g), Show s, TextualMonoid s) =>
TokenParsing (Fixed p g s) where
someSpace = positivePrimitive "someSpace" someSpace
longest :: Fixed Memoizing.Parser g s a -> Fixed Backtrack.Parser g [(s, g (ResultList g s))] a
longest (PositiveDirectParser p) = PositiveDirectParser (Memoizing.longest p)
longest p@DirectParser{} = DirectParser{complete= Memoizing.longest (complete p),
direct0= Memoizing.longest (direct0 p),
direct1= Memoizing.longest (direct1 p)}
longest p@Parser{} = Parser{complete= Memoizing.longest (complete p),
direct= Memoizing.longest (direct p),
direct0= Memoizing.longest (direct0 p),
direct1= Memoizing.longest (direct1 p),
indirect= Memoizing.longest (indirect p),
cyclicDescendants= cyclicDescendants p}
peg :: Fixed Backtrack.Parser g [(s, g (ResultList g s))] a -> Fixed Memoizing.Parser g s a
peg (PositiveDirectParser p) = PositiveDirectParser (Memoizing.peg p)
peg p@DirectParser{} = DirectParser{complete= Memoizing.peg (complete p),
direct0= Memoizing.peg (direct0 p),
direct1= Memoizing.peg (direct1 p)}
peg p@Parser{} = Parser{complete= Memoizing.peg (complete p),
direct= Memoizing.peg (direct p),
direct0= Memoizing.peg (direct0 p),
direct1= Memoizing.peg (direct1 p),
indirect= Memoizing.peg (indirect p),
cyclicDescendants= cyclicDescendants p}
terminalPEG :: Monoid s => Fixed Backtrack.Parser g s a -> Fixed Memoizing.Parser g s a
terminalPEG (PositiveDirectParser p) = PositiveDirectParser (Memoizing.terminalPEG p)
terminalPEG p@DirectParser{} = DirectParser{complete= Memoizing.terminalPEG (complete p),
direct0= Memoizing.terminalPEG (direct0 p),
direct1= Memoizing.terminalPEG (direct1 p)}
terminalPEG p@Parser{} = Parser{complete= Memoizing.terminalPEG (complete p),
direct= Memoizing.terminalPEG (direct p),
direct0= Memoizing.terminalPEG (direct0 p),
direct1= Memoizing.terminalPEG (direct1 p),
indirect= Memoizing.terminalPEG (indirect p),
cyclicDescendants= cyclicDescendants p}
parseRecursive :: forall g s. (Rank2.Apply g, Rank2.Distributive g, Rank2.Traversable g, FactorialMonoid s) =>
g (Parser g s) -> s -> [(s, g (ResultList g s))]
parseRecursive = parseSeparated . separated
separated :: forall g s. (Rank2.Apply g, Rank2.Distributive g, Rank2.Traversable g) =>
g (Parser g s) -> g (SeparatedParser Memoizing.Parser g s)
separated g = Rank2.liftA4 reseparate circulars cycleFollowers descendants g
where descendants :: g (Const (g (Const Bool)))
cycleFollowers, circulars :: g (Const Bool)
cyclicDescendantses :: g (Const (ParserFlags g))
leftRecursive :: forall a. Const (g (Const Bool)) a -> Const (ParserFlags g) a -> Const Bool a
leftRecursiveDeps :: forall a. Const Bool a -> Const (ParserFlags g) a -> Const (g (Const Bool)) a
reseparate :: forall a. Const Bool a -> Const Bool a -> Const (g (Const Bool)) a -> Parser g s a
-> SeparatedParser Memoizing.Parser g s a
reseparate (Const circular) (Const follower) (Const deps) p
| circular || leader && follower = CycleParser (indirect p) (direct p) deps
| follower = BackParser (complete p)
| otherwise = FrontParser (complete p)
where leader = getAny (Rank2.foldMap (Any . getConst) $ Rank2.liftA2 intersection circulars deps)
descendants = Rank2.fmap (Const . dependsOn . getConst) cyclicDescendantses
cyclicDescendantses = fixDescendants (Rank2.fmap (Const . cyclicDescendants . general) g)
circulars = Rank2.liftA2 leftRecursive bits cyclicDescendantses
cycleFollowers = getUnion (Rank2.foldMap (Union . getConst) $
Rank2.liftA2 leftRecursiveDeps circulars cyclicDescendantses)
leftRecursive (Const bit) (Const flags) =
Const (getAny $ Rank2.foldMap (Any . getConst) $ Rank2.liftA2 intersection bit $ dependsOn flags)
leftRecursiveDeps (Const True) (Const flags) = Const (dependsOn flags)
leftRecursiveDeps (Const False) (Const flags) = Const (Rank2.fmap (const $ Const False) (dependsOn flags))
intersection (Const a) (Const b) = Const (a && b)
fixDescendants :: forall g. (Rank2.Apply g, Rank2.Traversable g)
=> g (Const (g (Const (ParserFlags g)) -> (ParserFlags g))) -> g (Const (ParserFlags g))
fixDescendants gf = go initial
where go :: g (Const (ParserFlags g)) -> g (Const (ParserFlags g))
go cd
| getAll (Rank2.foldMap (All . getConst) $ Rank2.liftA2 agree cd cd') = cd
| otherwise = go cd'
where cd' = Rank2.liftA2 depsUnion cd (Rank2.fmap (\(Const f)-> Const (f cd)) gf)
agree (Const (ParserFlags _xn xd)) (Const (ParserFlags _yn yd)) =
Const (getAll (Rank2.foldMap (All . getConst) (Rank2.liftA2 agree' xd yd)))
agree' (Const x) (Const y) = Const (x == y)
depsUnion (Const ParserFlags{dependsOn= old}) (Const (ParserFlags n new)) =
Const (ParserFlags n $ Rank2.liftA2 union old new)
initial = Rank2.liftA2 (\_ (Const n)-> Const (ParserFlags n (const (Const False) Rank2.<$> gf))) gf nullabilities
nullabilities = fixNullabilities gf
fixNullabilities :: forall g. (Rank2.Apply g, Rank2.Traversable g)
=> g (Const (g (Const (ParserFlags g)) -> (ParserFlags g))) -> g (Const Bool)
fixNullabilities gf = Rank2.fmap (Const . nullable . getConst) (go initial)
where go :: g (Const (ParserFlags g)) -> g (Const (ParserFlags g))
go cd
| getAll (Rank2.foldMap (All . getConst) $ Rank2.liftA2 agree cd cd') = cd
| otherwise = go cd'
where cd' = Rank2.fmap (\(Const f)-> Const (f cd)) gf
agree (Const flags1) (Const flags2) = Const (nullable flags1 == nullable flags2)
initial = const (Const (ParserFlags True (const (Const False) Rank2.<$> gf))) Rank2.<$> gf
parseSeparated :: forall g s. (Rank2.Apply g, Rank2.Foldable g, FactorialMonoid s) =>
g (SeparatedParser Memoizing.Parser g s) -> s -> [(s, g (ResultList g s))]
parseSeparated parsers input = foldr parseTail [] (Factorial.tails input)
where parseTail s parsedTail = parsed
where parsed = (s,d''):parsedTail
d = Rank2.fmap (($ (s,d):parsedTail) . Memoizing.applyParser) directs
d' = fixRecursive s parsedTail d
d'' = Rank2.liftA2 f parsers d'
f :: forall a. SeparatedParser Memoizing.Parser g s a -> ResultList g s a -> ResultList g s a
f (FrontParser p) _ = Memoizing.applyParser p ((s,d''):parsedTail)
f _ result = result
fixRecursive :: s -> [(s, g (ResultList g s))] -> g (ResultList g s) -> g (ResultList g s)
whileAnyContinues :: g (ResultList g s) -> g (ResultList g s) -> g (ResultList g s)
recurseOnce :: s -> [(s, g (ResultList g s))] -> g (ResultList g s) -> g (ResultList g s)
maybeDependencies :: g (Const (Maybe (g (Const Bool))))
directs = Rank2.fmap backParser parsers
indirects = Rank2.fmap (\p-> case p of {CycleParser{}-> cycleParser p; _ -> empty}) parsers
maybeDependencies = Rank2.fmap (Const . maybeDependency) parsers
maybeDependency p@CycleParser{} = Just (dependencies p)
maybeDependency _ = Nothing
fixRecursive s parsedTail initial =
foldr1 whileAnyContinues (iterate (recurseOnce s parsedTail) initial)
whileAnyContinues g1 g2 = Rank2.liftA3 choiceWhile maybeDependencies g1 g2
where choiceWhile :: Const (Maybe (g (Const Bool))) x -> ResultList g i x -> ResultList g i x
-> ResultList g i x
combine :: Const Bool x -> ResultList g i x -> Const Bool x
choiceWhile (Const Nothing) r1 _ = r1
choiceWhile (Const (Just deps)) r1 r2
| getAny (Rank2.foldMap (Any . getConst) (Rank2.liftA2 combine deps g1)) = r1 <> r2
| otherwise = r1
combine (Const False) _ = Const False
combine (Const True) (ResultList EmptyTree _) = Const False
combine (Const True) _ = Const True
recurseOnce s parsedTail initial = Rank2.fmap (($ parsed) . Memoizing.applyParser) indirects
where parsed = (s, initial):parsedTail