module Data.GraphViz.Algorithms
(
CanonicaliseOptions(..)
, defaultCanonOptions
, dotLikeOptions
, canonicalise
, canonicaliseOptions
, transitiveReduction
, transitiveReductionOptions
) where
import Data.GraphViz.Attributes.Complete (Attributes, defaultAttributeValue)
import Data.GraphViz.Attributes.Same
import Data.GraphViz.Internal.Util (bool)
import Data.GraphViz.Types
import Data.GraphViz.Types.Canonical
import Data.GraphViz.Types.Internal.Common
import Control.Arrow (first, second, (***))
import Control.Monad (unless)
import Control.Monad.Trans.State
import qualified Data.DList as DList
import qualified Data.Foldable as F
import Data.Function (on)
import Data.List (deleteBy, groupBy, partition,
sortBy, (\\))
import Data.Map (Map)
import qualified Data.Map as Map
import Data.Maybe (fromMaybe, listToMaybe, mapMaybe)
import Data.Set (Set)
import qualified Data.Set as Set
data CanonicaliseOptions = COpts {
edgesInClusters :: Bool
, groupAttributes :: Bool
}
deriving (Eq, Ord, Show, Read)
defaultCanonOptions :: CanonicaliseOptions
defaultCanonOptions = COpts { edgesInClusters = True
, groupAttributes = True
}
dotLikeOptions :: CanonicaliseOptions
dotLikeOptions = COpts { edgesInClusters = True
, groupAttributes = False
}
canonicalise :: (DotRepr dg n) => dg n -> DotGraph n
canonicalise = canonicaliseOptions defaultCanonOptions
canonicaliseOptions :: (DotRepr dg n) => CanonicaliseOptions
-> dg n -> DotGraph n
canonicaliseOptions opts dg = cdg { strictGraph = graphIsStrict dg
, directedGraph = graphIsDirected dg
}
where
cdg = createCanonical opts (getID dg) gas cl nl es
(gas, cl) = graphStructureInformationClean dg
nl = nodeInformationClean True dg
es = edgeInformationClean True dg
type NodePath n = ([Maybe GraphID], DotNode n)
type NodePaths n = [NodePath n]
type EdgeClusters n = Map (Maybe GraphID) [DotEdge n]
type EdgeLocations n = (EdgeClusters n, [DotEdge n])
data CanonControl n = CC { cOpts :: !CanonicaliseOptions
, isGraph :: !Bool
, clusters :: !ClusterLookup
, clustEs :: !(EdgeLocations n)
, topID :: !(Maybe GraphID)
, topAttrs :: !Attributes
}
createCanonical :: (Ord n) => CanonicaliseOptions -> Maybe GraphID -> GlobalAttributes
-> ClusterLookup -> NodeLookup n -> [DotEdge n] -> DotGraph n
createCanonical opts gid gas cl nl es = promoteDSG $ makeGrouping cc ns
where
nUnlook (n,(p,as)) = (F.toList p, DotNode n as)
ns = sortBy (compLists `on` fst) . map nUnlook $ Map.toList nl
es' = if edgesInClusters opts
then edgeClusters nl es
else (Map.empty, es)
cc = CC { cOpts = opts
, isGraph = True
, clusters = cl
, clustEs = es'
, topID = gid
, topAttrs = attrs gas
}
thisLevel :: NodePaths n -> (NodePaths n, [DotNode n])
thisLevel = second (map snd) . span (not . null . fst)
makeGrouping :: CanonControl n -> NodePaths n -> DotSubGraph n
makeGrouping cc cns = DotSG { isCluster = True
, subGraphID = cID
, subGraphStmts = stmts
}
where
cID | isGraph cc = topID cc
| otherwise = head . fst . head $ cns
(nestedNs, ns) = thisLevel
. bool (map $ first tail) id (isGraph cc)
$ cns
es = bool (fromMaybe [] . Map.lookup cID . fst) snd (isGraph cc)
$ clustEs cc
gas | isGraph cc = topAttrs cc
| otherwise = attrs . snd $ clusters cc Map.! cID
subGs = map (makeGrouping $ cc { isGraph = False })
. groupBy ((==) `on` (listToMaybe . fst))
$ nestedNs
stmts = setGlobal (cOpts cc) gas
$ DotStmts { attrStmts = []
, subGraphs = subGs
, nodeStmts = ns
, edgeStmts = es
}
setGlobal :: CanonicaliseOptions
-> Attributes
-> DotStatements n
-> DotStatements n
setGlobal opts as stmts = stmts { attrStmts = globs'
, subGraphs = sgs'
, nodeStmts = ns'
, edgeStmts = es'
}
where
sgs = subGraphs stmts
sStmts = map subGraphStmts sgs
ns = nodeStmts stmts
es = edgeStmts stmts
sGlobs = map (partitionGlobal . attrStmts) sStmts
(sgas,snas,seas) = unzip3 sGlobs
gas' = as
nas' = getCommonGlobs opts nodeStmts snas sStmts $ map nodeAttributes ns
eas' = getCommonGlobs opts edgeStmts seas sStmts $ map edgeAttributes es
globs' = nonEmptyGAs [ GraphAttrs gas'
, NodeAttrs nas'
, EdgeAttrs eas'
]
ns' = map (\dn -> dn { nodeAttributes = nodeAttributes dn \\ nas' }) ns
es' = map (\de -> de { edgeAttributes = edgeAttributes de \\ eas' }) es
sgas' = updateGraphGlobs gas' sgas
snas' = map (\\ nas') snas
seas' = map (\\ eas') seas
sGlobs' = zip3 sgas' snas' seas'
sStmts' = zipWith (\ sSt sGl -> sSt { attrStmts = nonEmptyGAs $ unPartitionGlobal sGl })
sStmts
sGlobs'
sgs' = zipWith (\ sg sSt -> sg { subGraphStmts = sSt }) sgs sStmts'
updateGraphGlobs :: Attributes -> [Attributes] -> [Attributes]
updateGraphGlobs gas = map go
where
gasS = Set.fromList gas
override = toSAttr $ nonSameDefaults gas
go = Set.toList
. (`Set.difference` gasS)
. unSameSet
. (`Set.union` override)
. toSAttr
nonSameDefaults :: Attributes -> Attributes
nonSameDefaults = mapMaybe (\ a -> [ a' | a' <- defaultAttributeValue a, a' /= a] )
getCommonGlobs :: CanonicaliseOptions
-> (DotStatements n -> [a])
-> [Attributes]
-> [DotStatements n]
-> [Attributes]
-> Attributes
getCommonGlobs opts f sas stmts as
| not $ groupAttributes opts = []
| otherwise = case sas' ++ as of
[] -> []
[_] -> []
as' -> Set.toList . foldr1 Set.intersection
$ map Set.fromList as'
where
sas' = keepIfAny f sas stmts
keepIfAny :: (DotStatements n -> [a]) -> [Attributes] -> [DotStatements n]
-> [Attributes]
keepIfAny f sas = map fst . filter snd . zip sas . map (hasAny f)
hasAny :: (DotStatements n -> [a]) -> DotStatements n -> Bool
hasAny f ds = not (null $ f ds) || any (hasAny f . subGraphStmts) (subGraphs ds)
promoteDSG :: DotSubGraph n -> DotGraph n
promoteDSG dsg = DotGraph { strictGraph = undefined
, directedGraph = undefined
, graphID = subGraphID dsg
, graphStatements = subGraphStmts dsg
}
compLists :: (Ord a) => [a] -> [a] -> Ordering
compLists [] [] = EQ
compLists [] _ = GT
compLists _ [] = LT
compLists (x:xs) (y:ys) = case compare x y of
EQ -> compLists xs ys
oth -> oth
nonEmptyGAs :: [GlobalAttributes] -> [GlobalAttributes]
nonEmptyGAs = filter (not . null . attrs)
edgeClusters :: (Ord n) => NodeLookup n -> [DotEdge n]
-> EdgeLocations n
edgeClusters nl = (toM *** map snd) . partition (not . null . fst)
. map inClust
where
nl' = Map.map (F.toList . fst) nl
inClust de@(DotEdge n1 n2 _) = (flip (,) de)
. map fst . takeWhile (uncurry (==))
$ zip (nl' Map.! n1) (nl' Map.! n2)
toM = Map.map DList.toList
. Map.fromListWith (flip DList.append)
. map (last *** DList.singleton)
transitiveReduction :: (DotRepr dg n) => dg n -> DotGraph n
transitiveReduction = transitiveReductionOptions defaultCanonOptions
transitiveReductionOptions :: (DotRepr dg n) => CanonicaliseOptions
-> dg n -> DotGraph n
transitiveReductionOptions opts dg = cdg { strictGraph = graphIsStrict dg
, directedGraph = graphIsDirected dg
}
where
cdg = createCanonical opts (getID dg) gas cl nl es'
(gas, cl) = graphStructureInformationClean dg
nl = nodeInformationClean True dg
es = edgeInformationClean True dg
es' | graphIsDirected dg = rmTransEdges es
| otherwise = es
rmTransEdges :: (Ord n) => [DotEdge n] -> [DotEdge n]
rmTransEdges [] = []
rmTransEdges es = concatMap (map snd . outgoing) $ Map.elems esM
where
tes = tagEdges es
esMS = do edgeGraph tes
ns <- getsMap Map.keys
mapM_ (traverse zeroTag) ns
esM = fst $ execState esMS (Map.empty, Set.empty)
type Tag = Int
type TagSet = Set Int
type TaggedEdge n = (Tag, DotEdge n)
zeroTag :: Tag
zeroTag = 0
tagEdges :: [DotEdge n] -> [TaggedEdge n]
tagEdges = zip [(succ zeroTag)..]
data TaggedValues n = TV { marked :: Bool
, incoming :: [TaggedEdge n]
, outgoing :: [TaggedEdge n]
}
deriving (Eq, Ord, Show, Read)
defTV :: TaggedValues n
defTV = TV False [] []
type TagMap n = Map n (TaggedValues n)
type TagState n a = State (TagMap n, TagSet) a
getMap :: TagState n (TagMap n)
getMap = gets fst
getsMap :: (TagMap n -> a) -> TagState n a
getsMap f = gets (f . fst)
modifyMap :: (TagMap n -> TagMap n) -> TagState n ()
modifyMap f = modify (first f)
getSet :: TagState n TagSet
getSet = gets snd
modifySet :: (TagSet -> TagSet) -> TagState n ()
modifySet f = modify (second f)
edgeGraph :: (Ord n) => [TaggedEdge n] -> TagState n ()
edgeGraph = mapM_ addEdge . reverse
where
addEdge te = addVal f tvOut >> addVal t tvIn
where
e = snd te
f = fromNode e
t = toNode e
addVal n tv = modifyMap (Map.insertWith mergeTV n tv)
tvIn = defTV { incoming = [te] }
tvOut = defTV { outgoing = [te] }
mergeTV tvNew tv = tv { incoming = incoming tvNew ++ incoming tv
, outgoing = outgoing tvNew ++ outgoing tv
}
traverse :: (Ord n) => Tag -> n -> TagState n ()
traverse t n = do setMark True
checkIncoming
outEs <- getsMap (maybe [] outgoing . Map.lookup n)
mapM_ maybeRecurse outEs
setMark False
where
setMark mrk = modifyMap (Map.adjust (\tv -> tv { marked = mrk }) n)
isMarked m n' = maybe False marked $ n' `Map.lookup` m
checkIncoming = do m <- gets fst
let es = incoming $ m Map.! n
(keepEs, delEs) = partition (keepEdge m) es
modifyMap (Map.adjust (\tv -> tv {incoming = keepEs}) n)
modifySet (Set.union $ Set.fromList (map fst delEs))
mapM_ delOtherEdge delEs
where
keepEdge m (t',e) = t == t' || not (isMarked m $ fromNode e)
delOtherEdge te = modifyMap (Map.adjust delE . fromNode $ snd te)
where
delE tv = tv {outgoing = deleteBy ((==) `on` fst) te $ outgoing tv}
maybeRecurse (t',e) = do m <- getMap
delSet <- getSet
let n' = toNode e
unless (isMarked m n' || t' `Set.member` delSet)
$ traverse t' n'