module Data.GraphViz.Types.Graph
( DotGraph
, GraphID(..)
, Context(..)
, toCanonical
, unsafeFromCanonical
, fromDotRepr
, isEmpty
, hasClusters
, isEmptyGraph
, graphAttributes
, parentOf
, clusterAttributes
, foundInCluster
, attributesOf
, predecessorsOf
, successorsOf
, adjacentTo
, adjacent
, mkGraph
, emptyGraph
, (&)
, composeList
, addNode
, DotNode(..)
, addDotNode
, addEdge
, DotEdge(..)
, addDotEdge
, addCluster
, setClusterParent
, setClusterAttributes
, decompose
, decomposeAny
, decomposeList
, deleteNode
, deleteAllEdges
, deleteEdge
, deleteDotEdge
, deleteCluster
, removeEmptyClusters
) where
import Data.GraphViz.Algorithms (CanonicaliseOptions (..),
canonicaliseOptions)
import Data.GraphViz.Algorithms.Clustering
import Data.GraphViz.Attributes.Complete (Attributes)
import Data.GraphViz.Attributes.Same
import Data.GraphViz.Internal.Util (groupSortBy,
groupSortCollectBy)
import Data.GraphViz.Types
import qualified Data.GraphViz.Types.Canonical as C
import qualified Data.GraphViz.Types.Generalised as G
import Data.GraphViz.Types.Internal.Common (partitionGlobal)
import qualified Data.GraphViz.Types.State as St
import Control.Applicative (liftA2, (<$>), (<*>))
import Control.Arrow ((***))
import qualified Data.Foldable as F
import Data.List (delete, foldl', unfoldr)
import Data.Map (Map)
import qualified Data.Map as M
import Data.Maybe (fromMaybe, mapMaybe)
import qualified Data.Sequence as Seq
import qualified Data.Set as S
import Text.ParserCombinators.ReadPrec (prec)
import Text.Read (Lexeme (Ident), lexP, parens,
readPrec)
data DotGraph n = DG { strictGraph :: !Bool
, directedGraph :: !Bool
, graphAttrs :: !GlobAttrs
, graphID :: !(Maybe GraphID)
, clusters :: !(Map GraphID ClusterInfo)
, values :: !(NodeMap n)
}
deriving (Eq, Ord)
instance (Ord n, Show n) => Show (DotGraph n) where
showsPrec d dg = showParen (d > 10) $
showString "fromCanonical " . shows (toCanonical dg)
instance (Ord n, Read n) => Read (DotGraph n) where
readPrec = parens . prec 10
$ do Ident "fromCanonical" <- lexP
cdg <- readPrec
return $ fromCanonical cdg
data GlobAttrs = GA { graphAs :: !SAttrs
, nodeAs :: !SAttrs
, edgeAs :: !SAttrs
}
deriving (Eq, Ord, Show, Read)
data NodeInfo n = NI { _inCluster :: !(Maybe GraphID)
, _attributes :: !Attributes
, _predecessors :: !(EdgeMap n)
, _successors :: !(EdgeMap n)
}
deriving (Eq, Ord, Show, Read)
data ClusterInfo = CI { parentCluster :: !(Maybe GraphID)
, clusterAttrs :: !GlobAttrs
}
deriving (Eq, Ord, Show, Read)
type NodeMap n = Map n (NodeInfo n)
type EdgeMap n = Map n [Attributes]
data Context n = Cntxt { node :: !n
, inCluster :: !(Maybe GraphID)
, attributes :: !Attributes
, predecessors :: ![(n, Attributes)]
, successors :: ![(n, Attributes)]
}
deriving (Eq, Ord, Show, Read)
adjacent :: Context n -> [DotEdge n]
adjacent c = mapU (`DotEdge` n) (predecessors c)
++ mapU (DotEdge n) (successors c)
where
n = node c
mapU = map . uncurry
emptyGraph :: DotGraph n
emptyGraph = DG { strictGraph = False
, directedGraph = True
, graphID = Nothing
, graphAttrs = emptyGA
, clusters = M.empty
, values = M.empty
}
emptyGA :: GlobAttrs
emptyGA = GA S.empty S.empty S.empty
(&) :: (Ord n) => Context n -> DotGraph n -> DotGraph n
(Cntxt n mc as ps ss) & dg = withValues merge dg'
where
ps' = toMap ps
ps'' = M.delete n ps'
ss' = toMap ss
ss'' = M.delete n ss'
dg' = addNode n mc as dg
merge = addSucc n ps'' . addPred n ss''
. M.adjust (\ni -> ni { _predecessors = ps', _successors = ss' }) n
infixr 5 &
composeList :: (Ord n) => [Context n] -> DotGraph n
composeList = foldr (&) emptyGraph
addSucc :: (Ord n) => n -> EdgeMap n -> NodeMap n -> NodeMap n
addSucc = addPS niSucc
addPred :: (Ord n) => n -> EdgeMap n -> NodeMap n -> NodeMap n
addPred = addPS niPred
addPS :: (Ord n) => ((EdgeMap n -> EdgeMap n) -> NodeInfo n -> NodeInfo n)
-> n -> EdgeMap n -> NodeMap n -> NodeMap n
addPS fni t fas nm = t `seq` foldl' addSucc' nm fas'
where
fas' = fromMap fas
addSucc' nm' (f,as) = f `seq` M.alter (addS as) f nm'
addS as = Just
. maybe (error "Node not in the graph!")
(fni (M.insertWith (++) t [as]))
addNode :: (Ord n)
=> n
-> Maybe GraphID
-> Attributes
-> DotGraph n
-> DotGraph n
addNode n mc as dg
| n `M.member` ns = error "Node already exists in the graph"
| otherwise = addEmptyCluster mc
$ dg { values = ns' }
where
ns = values dg
ns' = M.insert n (NI mc as M.empty M.empty) ns
addDotNode :: (Ord n) => DotNode n -> DotGraph n -> DotGraph n
addDotNode (DotNode n as) = addNode n Nothing as
addEdge :: (Ord n) => n -> n -> Attributes -> DotGraph n -> DotGraph n
addEdge f t as = withValues merge
where
merge = addPred t (M.singleton f [as]) . addSucc f (M.singleton t [as])
addDotEdge :: (Ord n) => DotEdge n -> DotGraph n -> DotGraph n
addDotEdge (DotEdge f t as) = addEdge f t as
addCluster :: GraphID
-> Maybe GraphID
-> [GlobalAttributes]
-> DotGraph n
-> DotGraph n
addCluster c mp gas dg
| c `M.member` cs = error "Cluster already exists in the graph"
| otherwise = addEmptyCluster mp
$ dg { clusters = M.insert c ci cs }
where
cs = clusters dg
ci = CI mp $ toGlobAttrs gas
addEmptyCluster :: Maybe GraphID -> DotGraph n -> DotGraph n
addEmptyCluster = maybe id (withClusters . (`dontReplace` defCI))
where
dontReplace = M.insertWith (const id)
defCI = CI Nothing emptyGA
setClusterParent :: GraphID -> Maybe GraphID -> DotGraph n -> DotGraph n
setClusterParent c p = withClusters (M.adjust setP c) . addCs
where
addCs = addEmptyCluster p . addEmptyCluster (Just c)
setP ci = ci { parentCluster = p }
setClusterAttributes :: GraphID -> [GlobalAttributes]
-> DotGraph n -> DotGraph n
setClusterAttributes c gas = withClusters (M.adjust setAs c)
. addEmptyCluster (Just c)
where
setAs ci = ci { clusterAttrs = toGlobAttrs gas }
mkGraph :: (Ord n) => [DotNode n] -> [DotEdge n] -> DotGraph n
mkGraph ns es = flip (foldl' $ flip addDotEdge) es
$ foldl' (flip addDotNode) emptyGraph ns
toCanonical :: (Ord n) => DotGraph n -> C.DotGraph n
toCanonical dg = C.DotGraph { C.strictGraph = strictGraph dg
, C.directedGraph = directedGraph dg
, C.graphID = graphID dg
, C.graphStatements = stmts
}
where
stmts = C.DotStmts { C.attrStmts = fromGlobAttrs $ graphAttrs dg
, C.subGraphs = cs
, C.nodeStmts = ns
, C.edgeStmts = getEdgeInfo False dg
}
cls = clusters dg
pM = clusterPath' dg
clustAs = maybe [] (fromGlobAttrs . clusterAttrs) . (`M.lookup`cls)
lns = map (\ (n,ni) -> (n,(_inCluster ni, _attributes ni)))
. M.assocs $ values dg
(cs,ns) = clustersToNodes pathOf (const True) id clustAs snd lns
pathOf (n,(c,as)) = pathFrom c (n,as)
pathFrom c ln = F.foldr C (N ln) . fromMaybe Seq.empty $ (`M.lookup`pM) =<< c
decompose :: (Ord n) => n -> DotGraph n -> Maybe (Context n, DotGraph n)
decompose n dg
| n `M.notMember` ns = Nothing
| otherwise = Just (c, dg')
where
ns = values dg
(Just (NI mc as ps ss), ns') = M.updateLookupWithKey (const . const Nothing) n ns
c = Cntxt n mc as (fromMap $ n `M.delete` ps) (fromMap ss)
dg' = dg { values = delSucc n ps . delPred n ss $ ns' }
decomposeAny :: (Ord n) => DotGraph n -> Maybe (Context n, DotGraph n)
decomposeAny dg
| isEmpty dg = Nothing
| otherwise = decompose (fst . M.findMin $ values dg) dg
decomposeList :: (Ord n) => DotGraph n -> [Context n]
decomposeList = unfoldr decomposeAny
delSucc :: (Ord n) => n -> EdgeMap n -> NodeMap n -> NodeMap n
delSucc = delPS niSucc
delPred :: (Ord n) => n -> EdgeMap n -> NodeMap n -> NodeMap n
delPred = delPS niPred
delPS :: (Ord n) => ((EdgeMap n -> EdgeMap n) -> NodeInfo n -> NodeInfo n)
-> n -> EdgeMap n -> NodeMap n -> NodeMap n
delPS fni t fm nm = foldl' delE nm $ M.keys fm
where
delE nm' f = M.adjust (fni $ M.delete t) f nm'
deleteNode :: (Ord n) => n -> DotGraph n -> DotGraph n
deleteNode n dg = maybe dg snd $ decompose n dg
deleteAllEdges :: (Ord n) => n -> n -> DotGraph n -> DotGraph n
deleteAllEdges n1 n2 = withValues (delAE n1 n2 . delAE n2 n1)
where
delAE f t = delSucc f t' . delPred f t'
where
t' = M.singleton t []
deleteEdge :: (Ord n) => n -> n -> Attributes -> DotGraph n -> DotGraph n
deleteEdge n1 n2 as dg = withValues delEs dg
where
delE f t = M.adjust (niSucc $ M.adjust (delete as) t) f
. M.adjust (niPred $ M.adjust (delete as) f) t
delEs | directedGraph dg = delE n1 n2
| otherwise = delE n1 n2 . delE n2 n1
deleteDotEdge :: (Ord n) => DotEdge n -> DotGraph n -> DotGraph n
deleteDotEdge (DotEdge n1 n2 as) = deleteEdge n1 n2 as
deleteCluster :: (Ord n) => GraphID -> DotGraph n -> DotGraph n
deleteCluster c dg = withValues (M.map adjNode)
. withClusters (M.map adjCluster . M.delete c)
$ dg
where
p = parentCluster =<< c `M.lookup` clusters dg
adjParent p'
| p' == Just c = p
| otherwise = p'
adjNode ni = ni { _inCluster = adjParent $ _inCluster ni }
adjCluster ci = ci { parentCluster = adjParent $ parentCluster ci }
removeEmptyClusters :: (Ord n) => DotGraph n -> DotGraph n
removeEmptyClusters dg = dg { clusters = cM' }
where
cM = clusters dg
cM' = (cM `M.difference` invCs) `M.difference` invNs
invCs = usedClustsIn $ M.map parentCluster cM
invNs = usedClustsIn . M.map _inCluster $ values dg
usedClustsIn = M.fromAscList
. map ((,) <$> fst . head <*> map snd)
. groupSortBy fst
. mapMaybe (uncurry (fmap . flip (,)))
. M.assocs
isEmpty :: DotGraph n -> Bool
isEmpty = M.null . values
hasClusters :: DotGraph n -> Bool
hasClusters = M.null . clusters
isEmptyGraph :: DotGraph n -> Bool
isEmptyGraph = liftA2 (&&) isEmpty (not . hasClusters)
graphAttributes :: DotGraph n -> [GlobalAttributes]
graphAttributes = fromGlobAttrs . graphAttrs
foundInCluster :: (Ord n) => DotGraph n -> n -> Maybe GraphID
foundInCluster dg n = _inCluster $ values dg M.! n
attributesOf :: (Ord n) => DotGraph n -> n -> Attributes
attributesOf dg n = _attributes $ values dg M.! n
predecessorsOf :: (Ord n) => DotGraph n -> n -> [DotEdge n]
predecessorsOf dg t
| directedGraph dg = emToDE (`DotEdge` t)
. _predecessors $ values dg M.! t
| otherwise = adjacentTo dg t
successorsOf :: (Ord n) => DotGraph n -> n -> [DotEdge n]
successorsOf dg f
| directedGraph dg = emToDE (DotEdge f)
. _successors $ values dg M.! f
| otherwise = adjacentTo dg f
adjacentTo :: (Ord n) => DotGraph n -> n -> [DotEdge n]
adjacentTo dg n = sucs ++ preds
where
ni = values dg M.! n
sucs = emToDE (DotEdge n) $ _successors ni
preds = emToDE (`DotEdge` n) $ n `M.delete` _predecessors ni
emToDE :: (Ord n) => (n -> Attributes -> DotEdge n)
-> EdgeMap n -> [DotEdge n]
emToDE f = map (uncurry f) . fromMap
parentOf :: DotGraph n -> GraphID -> Maybe GraphID
parentOf dg c = parentCluster $ clusters dg M.! c
clusterAttributes :: DotGraph n -> GraphID -> [GlobalAttributes]
clusterAttributes dg c = fromGlobAttrs . clusterAttrs $ clusters dg M.! c
instance (Ord n) => DotRepr DotGraph n where
fromCanonical = fromDotRepr
getID = graphID
setID i g = g { graphID = Just i }
graphIsDirected = directedGraph
setIsDirected d g = g { directedGraph = d }
graphIsStrict = strictGraph
setStrictness s g = g { strictGraph = s }
mapDotGraph = mapNs
graphStructureInformation = getGraphInfo
nodeInformation = getNodeInfo
edgeInformation = getEdgeInfo
unAnonymise = id
instance (Ord n) => G.FromGeneralisedDot DotGraph n where
fromGeneralised = fromDotRepr
instance (Ord n, PrintDot n) => PrintDotRepr DotGraph n
instance (Ord n, ParseDot n) => ParseDotRepr DotGraph n
instance (Ord n, PrintDot n, ParseDot n) => PPDotRepr DotGraph n
instance (Ord n, PrintDot n) => PrintDot (DotGraph n) where
unqtDot = unqtDot . toCanonical
instance (Ord n, ParseDot n) => ParseDot (DotGraph n) where
parseUnqt = fromGDot <$> parseUnqt
where
fromGDot = fromDotRepr . (`asTypeOf` (undefined :: G.DotGraph n))
parse = parseUnqt
cOptions :: CanonicaliseOptions
cOptions = COpts { edgesInClusters = False
, groupAttributes = True
}
fromDotRepr :: (DotRepr dg n) => dg n -> DotGraph n
fromDotRepr = unsafeFromCanonical . canonicaliseOptions cOptions . unAnonymise
unsafeFromCanonical :: (Ord n) => C.DotGraph n -> DotGraph n
unsafeFromCanonical dg = DG { strictGraph = C.strictGraph dg
, directedGraph = dirGraph
, graphAttrs = as
, graphID = mgid
, clusters = cs
, values = ns
}
where
stmts = C.graphStatements dg
mgid = C.graphID dg
dirGraph = C.directedGraph dg
(as, cs, ns) = fCStmt Nothing stmts
fCStmt p stmts' = (sgAs, cs', ns')
where
sgAs = toGlobAttrs $ C.attrStmts stmts'
(cs', sgNs) = (M.unions *** M.unions) . unzip
. map (fCSG p) $ C.subGraphs stmts'
nNs = M.fromList . map (fDN p) $ C.nodeStmts stmts'
ns' = sgNs `M.union` nNs
fCSG p sg = (M.insert sgid ci cs', ns')
where
msgid@(Just sgid) = C.subGraphID sg
(as', cs', ns') = fCStmt msgid $ C.subGraphStmts sg
ci = CI p as'
fDN p (DotNode n as') = ( n
, NI { _inCluster = p
, _attributes = as'
, _predecessors = eSel n tEs
, _successors = eSel n fEs
}
)
es = C.edgeStmts stmts
fEs = toEdgeMap fromNode toNode es
tEs = delLoops $ toEdgeMap toNode fromNode es
eSel n es' = fromMaybe M.empty $ n `M.lookup` es'
delLoops = M.mapWithKey M.delete
toEdgeMap :: (Ord n) => (DotEdge n -> n) -> (DotEdge n -> n) -> [DotEdge n]
-> Map n (EdgeMap n)
toEdgeMap f t = M.map eM . M.fromList . groupSortCollectBy f t'
where
t' = liftA2 (,) t edgeAttributes
eM = M.fromList . groupSortCollectBy fst snd
mapNs :: (Ord n, Ord n') => (n -> n') -> DotGraph n -> DotGraph n'
mapNs f (DG st d as mid cs vs) = DG st d as mid cs
$ mapNM vs
where
mapNM = M.map mapNI . mpM
mapNI (NI mc as' ps ss) = NI mc as' (mpM ps) (mpM ss)
mpM = M.mapKeys f
getGraphInfo :: DotGraph n -> (GlobalAttributes, ClusterLookup)
getGraphInfo dg = (gas, cl)
where
toGA = GraphAttrs . unSame
(gas, cgs) = (toGA *** M.map toGA) $ globAttrMap graphAs dg
pM = M.map pInit $ clusterPath dg
cl = M.mapWithKey addPath $ M.mapKeysMonotonic Just cgs
addPath c as = ( maybe [] (:[]) $ c `M.lookup` pM
, as
)
pInit p = case Seq.viewr p of
(p' Seq.:> _) -> p'
_ -> Seq.empty
getNodeInfo :: (Ord n) => Bool -> DotGraph n
-> NodeLookup n
getNodeInfo withGlob dg = M.map toLookup ns
where
(gGlob, aM) = globAttrMap nodeAs dg
pM = clusterPath dg
ns = values dg
toLookup ni = (pth, as')
where
as = _attributes ni
mp = _inCluster ni
pth = fromMaybe Seq.empty $ mp `M.lookup` pM
pAs = fromMaybe gGlob $ (`M.lookup` aM) =<< mp
as' | withGlob = unSame $ toSAttr as `S.union` pAs
| otherwise = as
getEdgeInfo :: (Ord n) => Bool -> DotGraph n -> [DotEdge n]
getEdgeInfo withGlob dg = concatMap (uncurry mkDotEdges) es
where
gGlob = edgeAs $ graphAttrs dg
es = concatMap (uncurry (map . (,)))
. M.assocs . M.map (M.assocs . _successors)
$ values dg
addGlob as
| withGlob = unSame $ toSAttr as `S.union` gGlob
| otherwise = as
mkDotEdges f (t, ass) = map (DotEdge f t . addGlob) ass
globAttrMap :: (GlobAttrs -> SAttrs) -> DotGraph n
-> (SAttrs, Map GraphID SAttrs)
globAttrMap af dg = (gGlob, aM)
where
gGlob = af $ graphAttrs dg
cs = clusters dg
aM = M.map attrsFor cs
attrsFor ci = as `S.union` pAs
where
as = af $ clusterAttrs ci
p = parentCluster ci
pAs = fromMaybe gGlob $ (`M.lookup` aM) =<< p
clusterPath :: DotGraph n -> Map (Maybe GraphID) St.Path
clusterPath = M.mapKeysMonotonic Just . M.map (fmap Just) . clusterPath'
clusterPath' :: DotGraph n -> Map GraphID (Seq.Seq GraphID)
clusterPath' dg = pM
where
cs = clusters dg
pM = M.mapWithKey pathOf cs
pathOf c ci = pPth Seq.|> c
where
mp = parentCluster ci
pPth = fromMaybe Seq.empty $ (`M.lookup` pM) =<< mp
withValues :: (Ord n) => (NodeMap n -> NodeMap n)
-> DotGraph n -> DotGraph n
withValues f dg = dg { values = f $ values dg }
withClusters :: (Map GraphID ClusterInfo -> Map GraphID ClusterInfo)
-> DotGraph n -> DotGraph n
withClusters f dg = dg { clusters = f $ clusters dg }
toGlobAttrs :: [GlobalAttributes] -> GlobAttrs
toGlobAttrs = mkGA . partitionGlobal
where
mkGA (ga,na,ea) = GA (toSAttr ga) (toSAttr na) (toSAttr ea)
fromGlobAttrs :: GlobAttrs -> [GlobalAttributes]
fromGlobAttrs (GA ga na ea) = filter (not . null . attrs)
[ GraphAttrs $ unSame ga
, NodeAttrs $ unSame na
, EdgeAttrs $ unSame ea
]
niSucc :: (Ord n) => (EdgeMap n -> EdgeMap n) -> NodeInfo n -> NodeInfo n
niSucc f ni = ni { _successors = f $ _successors ni }
niPred :: (Ord n) => (EdgeMap n -> EdgeMap n) -> NodeInfo n -> NodeInfo n
niPred f ni = ni { _predecessors = f $ _predecessors ni }
toMap :: (Ord n) => [(n, Attributes)] -> EdgeMap n
toMap = M.fromAscList . groupSortCollectBy fst snd
fromMap :: EdgeMap n -> [(n, Attributes)]
fromMap = concatMap (uncurry (map . (,))) . M.toList