{-# OPTIONS_GHC -w #-} {-# OPTIONS -XMagicHash -XBangPatterns -XTypeSynonymInstances -XFlexibleInstances -cpp #-} #if __GLASGOW_HASKELL__ >= 710 {-# OPTIONS_GHC -XPartialTypeSignatures #-} #endif {-# OPTIONS_GHC -w #-} module Happy.Frontend.AttrGrammar.Parser (agParser) where import Happy.Frontend.ParseMonad.Class import Happy.Frontend.ParseMonad import Happy.Frontend.AttrGrammar import qualified Data.Array as Happy_Data_Array import qualified Data.Bits as Bits import qualified GHC.Exts as Happy_GHC_Exts import Control.Applicative(Applicative(..)) import Control.Monad (ap) -- parser produced by Happy Version 1.20.1.1 newtype HappyAbsSyn = HappyAbsSyn HappyAny #if __GLASGOW_HASKELL__ >= 607 type HappyAny = Happy_GHC_Exts.Any #else type HappyAny = forall a . a #endif newtype HappyWrap4 = HappyWrap4 ([AgRule]) happyIn4 :: ([AgRule]) -> (HappyAbsSyn ) happyIn4 x = Happy_GHC_Exts.unsafeCoerce# (HappyWrap4 x) {-# INLINE happyIn4 #-} happyOut4 :: (HappyAbsSyn ) -> HappyWrap4 happyOut4 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut4 #-} newtype HappyWrap5 = HappyWrap5 ([AgRule]) happyIn5 :: ([AgRule]) -> (HappyAbsSyn ) happyIn5 x = Happy_GHC_Exts.unsafeCoerce# (HappyWrap5 x) {-# INLINE happyIn5 #-} happyOut5 :: (HappyAbsSyn ) -> HappyWrap5 happyOut5 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut5 #-} newtype HappyWrap6 = HappyWrap6 (AgRule) happyIn6 :: (AgRule) -> (HappyAbsSyn ) happyIn6 x = Happy_GHC_Exts.unsafeCoerce# (HappyWrap6 x) {-# INLINE happyIn6 #-} happyOut6 :: (HappyAbsSyn ) -> HappyWrap6 happyOut6 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut6 #-} newtype HappyWrap7 = HappyWrap7 ([AgToken]) happyIn7 :: ([AgToken]) -> (HappyAbsSyn ) happyIn7 x = Happy_GHC_Exts.unsafeCoerce# (HappyWrap7 x) {-# INLINE happyIn7 #-} happyOut7 :: (HappyAbsSyn ) -> HappyWrap7 happyOut7 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut7 #-} newtype HappyWrap8 = HappyWrap8 ([AgToken]) happyIn8 :: ([AgToken]) -> (HappyAbsSyn ) happyIn8 x = Happy_GHC_Exts.unsafeCoerce# (HappyWrap8 x) {-# INLINE happyIn8 #-} happyOut8 :: (HappyAbsSyn ) -> HappyWrap8 happyOut8 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut8 #-} happyInTok :: (AgToken) -> (HappyAbsSyn ) happyInTok x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyInTok #-} happyOutTok :: (HappyAbsSyn ) -> (AgToken) happyOutTok x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOutTok #-} happyExpList :: HappyAddr happyExpList = HappyA# "\x00\xf0\x00\xc0\x03\x00\x00\x00\x01\x00\xe9\x01\x20\x00\x80\x00\x00\x02\x00\x00\x00\xa4\x07\x90\x1e\x40\x7a\x00\x00\x00\xb4\x07\x90\x1e\x40\x7a\x00\xe9\x01\xa4\x07\x90\x1e\x00\x3c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x40\x7b\x00\xed\x01\xb4\x07\xd0\x1e\x40\x7b\x00\xe9\x01\xb4\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\xe9\x01\x00\x00\xd0\x1e\x00\x00\x00\x00"# {-# NOINLINE happyExpListPerState #-} happyExpListPerState st = token_strs_expected where token_strs = ["error","%dummy","%start_agParser","agParser","rules","rule","code","code0","\"{\"","\"}\"","\";\"","\"=\"","where","selfRef","subRef","rightRef","unknown","%eof"] bit_start = st Prelude.* 18 bit_end = (st Prelude.+ 1) Prelude.* 18 read_bit = readArrayBit happyExpList bits = Prelude.map read_bit [bit_start..bit_end Prelude.- 1] bits_indexed = Prelude.zip bits [0..17] token_strs_expected = Prelude.concatMap f bits_indexed f (Prelude.False, _) = [] f (Prelude.True, nr) = [token_strs Prelude.!! nr] happyActOffsets :: HappyAddr happyActOffsets = HappyA# "\x0f\x00\x0f\x00\x00\x00\xfe\xff\x0a\x00\xff\xff\x02\x00\x19\x00\x05\x00\x0a\x00\x0a\x00\x0a\x00\x00\x00\x01\x00\x0a\x00\x0a\x00\x0a\x00\x0a\x00\x0a\x00\x0f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x01\x00\x01\x00\x01\x00\x01\x00\x01\x00\x0a\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1d\x00\x0a\x00\x00\x00\x01\x00\x00\x00\x00\x00"# happyGotoOffsets :: HappyAddr happyGotoOffsets = HappyA# "\x18\x00\x0b\x00\x00\x00\x00\x00\x1e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1f\x00\x20\x00\x21\x00\x00\x00\x22\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2f\x00\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x32\x00\x00\x00\x33\x00\x00\x00\x00\x00"# happyAdjustOffset :: Happy_GHC_Exts.Int# -> Happy_GHC_Exts.Int# happyAdjustOffset off = off happyDefActions :: HappyAddr happyDefActions = HappyA# "\xfb\xff\x00\x00\xfe\xff\xfc\xff\xf0\xff\x00\x00\x00\x00\x00\x00\x00\x00\xf0\xff\xf0\xff\xf0\xff\xf7\xff\xe8\xff\xf0\xff\xf0\xff\xf0\xff\xf0\xff\xf0\xff\xfb\xff\xfd\xff\xf1\xff\xf2\xff\xf3\xff\xf4\xff\xf5\xff\x00\x00\xe8\xff\xe8\xff\xe8\xff\xe8\xff\xe8\xff\xf0\xff\xe8\xff\xfa\xff\xf9\xff\xf8\xff\xe9\xff\xea\xff\xeb\xff\xec\xff\xee\xff\xed\xff\x00\x00\xf0\xff\xf6\xff\xe8\xff\xef\xff"# happyCheck :: HappyAddr happyCheck = HappyA# "\xff\xff\x03\x00\x01\x00\x04\x00\x03\x00\x04\x00\x04\x00\x06\x00\x07\x00\x08\x00\x09\x00\x01\x00\x01\x00\x02\x00\x04\x00\x0a\x00\x06\x00\x07\x00\x08\x00\x09\x00\x05\x00\x06\x00\x07\x00\x08\x00\x00\x00\x01\x00\x02\x00\x01\x00\x02\x00\x04\x00\x02\x00\x02\x00\xff\xff\x03\x00\x03\x00\x03\x00\x03\x00\xff\xff\x04\x00\x03\x00\x03\x00\x03\x00\x03\x00\x03\x00\xff\xff\x04\x00\x04\x00\x04\x00\x04\x00\x04\x00\x03\x00\xff\xff\x04\x00\x03\x00\xff\xff\x04\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"# happyTable :: HappyAddr happyTable = HappyA# "\x00\x00\x14\x00\x1c\x00\x0c\x00\x1d\x00\x1e\x00\x0b\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x0e\x00\x02\x00\x03\x00\x0f\x00\xff\xff\x10\x00\x11\x00\x12\x00\x13\x00\x05\x00\x06\x00\x07\x00\x08\x00\x08\x00\x02\x00\x03\x00\x14\x00\x03\x00\x0a\x00\x2d\x00\x2f\x00\x00\x00\x0c\x00\x24\x00\x23\x00\x22\x00\x00\x00\x1a\x00\x19\x00\x18\x00\x17\x00\x16\x00\x15\x00\x00\x00\x2b\x00\x2a\x00\x29\x00\x28\x00\x27\x00\x26\x00\x00\x00\x25\x00\x2d\x00\x00\x00\x2f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"# happyReduceArr = Happy_Data_Array.array (1, 23) [ (1 , happyReduce_1), (2 , happyReduce_2), (3 , happyReduce_3), (4 , happyReduce_4), (5 , happyReduce_5), (6 , happyReduce_6), (7 , happyReduce_7), (8 , happyReduce_8), (9 , happyReduce_9), (10 , happyReduce_10), (11 , happyReduce_11), (12 , happyReduce_12), (13 , happyReduce_13), (14 , happyReduce_14), (15 , happyReduce_15), (16 , happyReduce_16), (17 , happyReduce_17), (18 , happyReduce_18), (19 , happyReduce_19), (20 , happyReduce_20), (21 , happyReduce_21), (22 , happyReduce_22), (23 , happyReduce_23) ] happy_n_terms = 11 :: Prelude.Int happy_n_nonterms = 5 :: Prelude.Int happyReduce_1 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ) happyReduce_1 = happySpecReduce_1 0# happyReduction_1 happyReduction_1 happy_x_1 = case happyOut5 happy_x_1 of { (HappyWrap5 happy_var_1) -> happyIn4 (happy_var_1 )} happyReduce_2 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ) happyReduce_2 = happySpecReduce_3 1# happyReduction_2 happyReduction_2 happy_x_3 happy_x_2 happy_x_1 = case happyOut6 happy_x_1 of { (HappyWrap6 happy_var_1) -> case happyOut5 happy_x_3 of { (HappyWrap5 happy_var_3) -> happyIn5 (happy_var_1 : happy_var_3 )}} happyReduce_3 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ) happyReduce_3 = happySpecReduce_1 1# happyReduction_3 happyReduction_3 happy_x_1 = case happyOut6 happy_x_1 of { (HappyWrap6 happy_var_1) -> happyIn5 (happy_var_1 : [] )} happyReduce_4 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ) happyReduce_4 = happySpecReduce_0 1# happyReduction_4 happyReduction_4 = happyIn5 ([] ) happyReduce_5 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ) happyReduce_5 = happySpecReduce_3 2# happyReduction_5 happyReduction_5 happy_x_3 happy_x_2 happy_x_1 = case happyOutTok happy_x_1 of { happy_var_1 -> case happyOut7 happy_x_3 of { (HappyWrap7 happy_var_3) -> happyIn6 (SelfAssign $ MkAgSelfAssign (selfRefVal happy_var_1) happy_var_3 )}} happyReduce_6 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ) happyReduce_6 = happySpecReduce_3 2# happyReduction_6 happyReduction_6 happy_x_3 happy_x_2 happy_x_1 = case happyOutTok happy_x_1 of { happy_var_1 -> case happyOut7 happy_x_3 of { (HappyWrap7 happy_var_3) -> happyIn6 (SubAssign $ MkAgSubAssign (subRefVal happy_var_1) happy_var_3 )}} happyReduce_7 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ) happyReduce_7 = happySpecReduce_3 2# happyReduction_7 happyReduction_7 happy_x_3 happy_x_2 happy_x_1 = case happyOutTok happy_x_1 of { happy_var_1 -> case happyOut7 happy_x_3 of { (HappyWrap7 happy_var_3) -> happyIn6 (RightmostAssign (rightRefVal happy_var_1) happy_var_3 )}} happyReduce_8 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ) happyReduce_8 = happySpecReduce_2 2# happyReduction_8 happyReduction_8 happy_x_2 happy_x_1 = case happyOut7 happy_x_2 of { (HappyWrap7 happy_var_2) -> happyIn6 (Conditional $ MkAgConditional happy_var_2 )} happyReduce_9 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ) happyReduce_9 = happyReduce 4# 3# happyReduction_9 happyReduction_9 (happy_x_4 `HappyStk` happy_x_3 `HappyStk` happy_x_2 `HappyStk` happy_x_1 `HappyStk` happyRest) = case happyOutTok happy_x_1 of { happy_var_1 -> case happyOut8 happy_x_2 of { (HappyWrap8 happy_var_2) -> case happyOutTok happy_x_3 of { happy_var_3 -> case happyOut7 happy_x_4 of { (HappyWrap7 happy_var_4) -> happyIn7 ([happy_var_1] ++ happy_var_2 ++ [happy_var_3] ++ happy_var_4 ) `HappyStk` happyRest}}}} happyReduce_10 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ) happyReduce_10 = happySpecReduce_2 3# happyReduction_10 happyReduction_10 happy_x_2 happy_x_1 = case happyOutTok happy_x_1 of { happy_var_1 -> case happyOut7 happy_x_2 of { (HappyWrap7 happy_var_2) -> happyIn7 (happy_var_1 : happy_var_2 )}} happyReduce_11 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ) happyReduce_11 = happySpecReduce_2 3# happyReduction_11 happyReduction_11 happy_x_2 happy_x_1 = case happyOutTok happy_x_1 of { happy_var_1 -> case happyOut7 happy_x_2 of { (HappyWrap7 happy_var_2) -> happyIn7 (happy_var_1 : happy_var_2 )}} happyReduce_12 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ) happyReduce_12 = happySpecReduce_2 3# happyReduction_12 happyReduction_12 happy_x_2 happy_x_1 = case happyOutTok happy_x_1 of { happy_var_1 -> case happyOut7 happy_x_2 of { (HappyWrap7 happy_var_2) -> happyIn7 (happy_var_1 : happy_var_2 )}} happyReduce_13 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ) happyReduce_13 = happySpecReduce_2 3# happyReduction_13 happyReduction_13 happy_x_2 happy_x_1 = case happyOutTok happy_x_1 of { happy_var_1 -> case happyOut7 happy_x_2 of { (HappyWrap7 happy_var_2) -> happyIn7 (happy_var_1 : happy_var_2 )}} happyReduce_14 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ) happyReduce_14 = happySpecReduce_2 3# happyReduction_14 happyReduction_14 happy_x_2 happy_x_1 = case happyOutTok happy_x_1 of { happy_var_1 -> case happyOut7 happy_x_2 of { (HappyWrap7 happy_var_2) -> happyIn7 (happy_var_1 : happy_var_2 )}} happyReduce_15 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ) happyReduce_15 = happySpecReduce_0 3# happyReduction_15 happyReduction_15 = happyIn7 ([] ) happyReduce_16 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ) happyReduce_16 = happyReduce 4# 4# happyReduction_16 happyReduction_16 (happy_x_4 `HappyStk` happy_x_3 `HappyStk` happy_x_2 `HappyStk` happy_x_1 `HappyStk` happyRest) = case happyOutTok happy_x_1 of { happy_var_1 -> case happyOut8 happy_x_2 of { (HappyWrap8 happy_var_2) -> case happyOutTok happy_x_3 of { happy_var_3 -> case happyOut8 happy_x_4 of { (HappyWrap8 happy_var_4) -> happyIn8 ([happy_var_1] ++ happy_var_2 ++ [happy_var_3] ++ happy_var_4 ) `HappyStk` happyRest}}}} happyReduce_17 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ) happyReduce_17 = happySpecReduce_2 4# happyReduction_17 happyReduction_17 happy_x_2 happy_x_1 = case happyOutTok happy_x_1 of { happy_var_1 -> case happyOut8 happy_x_2 of { (HappyWrap8 happy_var_2) -> happyIn8 (happy_var_1 : happy_var_2 )}} happyReduce_18 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ) happyReduce_18 = happySpecReduce_2 4# happyReduction_18 happyReduction_18 happy_x_2 happy_x_1 = case happyOutTok happy_x_1 of { happy_var_1 -> case happyOut8 happy_x_2 of { (HappyWrap8 happy_var_2) -> happyIn8 (happy_var_1 : happy_var_2 )}} happyReduce_19 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ) happyReduce_19 = happySpecReduce_2 4# happyReduction_19 happyReduction_19 happy_x_2 happy_x_1 = case happyOutTok happy_x_1 of { happy_var_1 -> case happyOut8 happy_x_2 of { (HappyWrap8 happy_var_2) -> happyIn8 (happy_var_1 : happy_var_2 )}} happyReduce_20 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ) happyReduce_20 = happySpecReduce_2 4# happyReduction_20 happyReduction_20 happy_x_2 happy_x_1 = case happyOutTok happy_x_1 of { happy_var_1 -> case happyOut8 happy_x_2 of { (HappyWrap8 happy_var_2) -> happyIn8 (happy_var_1 : happy_var_2 )}} happyReduce_21 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ) happyReduce_21 = happySpecReduce_2 4# happyReduction_21 happyReduction_21 happy_x_2 happy_x_1 = case happyOutTok happy_x_1 of { happy_var_1 -> case happyOut7 happy_x_2 of { (HappyWrap7 happy_var_2) -> happyIn8 (happy_var_1 : happy_var_2 )}} happyReduce_22 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ) happyReduce_22 = happySpecReduce_2 4# happyReduction_22 happyReduction_22 happy_x_2 happy_x_1 = case happyOutTok happy_x_1 of { happy_var_1 -> case happyOut8 happy_x_2 of { (HappyWrap8 happy_var_2) -> happyIn8 (happy_var_1 : happy_var_2 )}} happyReduce_23 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ) happyReduce_23 = happySpecReduce_0 4# happyReduction_23 happyReduction_23 = happyIn8 ([] ) happyNewToken action sts stk = lexTokenP(\tk -> let cont i = happyDoAction i tk action sts stk in case tk of { AgTok_EOF -> happyDoAction 10# tk action sts stk; AgTok_LBrace -> cont 1#; AgTok_RBrace -> cont 2#; AgTok_Semicolon -> cont 3#; AgTok_Eq -> cont 4#; AgTok_Where -> cont 5#; AgTok_SelfRef _ -> cont 6#; AgTok_SubRef _ -> cont 7#; AgTok_RightmostRef _ -> cont 8#; AgTok_Unknown _ -> cont 9#; _ -> happyError' (tk, []) }) happyError_ explist 10# tk = happyError' (tk, explist) happyError_ explist _ tk = happyError' (tk, explist) happyThen :: () => P a -> (a -> P b) -> P b happyThen = (Prelude.>>=) happyReturn :: () => a -> P a happyReturn = (Prelude.return) happyParse :: () => Happy_GHC_Exts.Int# -> P (HappyAbsSyn ) happyNewToken :: () => Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ) happyDoAction :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ) happyReduceArr :: () => Happy_Data_Array.Array Prelude.Int (Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )) happyThen1 :: () => P a -> (a -> P b) -> P b happyThen1 = happyThen happyReturn1 :: () => a -> P a happyReturn1 = happyReturn happyError' :: () => ((AgToken), [Prelude.String]) -> P a happyError' tk = (\(tokens, explist) -> happyError) tk agParser = happySomeParser where happySomeParser = happyThen (happyParse 0#) (\x -> happyReturn (let {(HappyWrap4 x') = happyOut4 x} in x')) happySeq = happyDontSeq happyError :: P a happyError = failP (\l -> show l ++ ": Parse error\n") {-# LINE 1 "templates/GenericTemplate.hs" #-} -- $Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp $ -- Do not remove this comment. Required to fix CPP parsing when using GCC and a clang-compiled alex. #if __GLASGOW_HASKELL__ > 706 #define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Prelude.Bool) #define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Prelude.Bool) #define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Prelude.Bool) #else #define LT(n,m) (n Happy_GHC_Exts.<# m) #define GTE(n,m) (n Happy_GHC_Exts.>=# m) #define EQ(n,m) (n Happy_GHC_Exts.==# m) #endif data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList infixr 9 `HappyStk` data HappyStk a = HappyStk a (HappyStk a) ----------------------------------------------------------------------------- -- starting the parse happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll ----------------------------------------------------------------------------- -- Accepting the parse -- If the current token is ERROR_TOK, it means we've just accepted a partial -- parse (a %partial parser). We must ignore the saved token on the top of -- the stack in this case. happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) = happyReturn1 ans happyAccept j tk st sts (HappyStk ans _) = (happyTcHack j (happyTcHack st)) (happyReturn1 ans) ----------------------------------------------------------------------------- -- Arrays only: do the next action happyDoAction i tk st = {- nothing -} case action of 0# -> {- nothing -} happyFail (happyExpListPerState ((Happy_GHC_Exts.I# (st)) :: Prelude.Int)) i tk st -1# -> {- nothing -} happyAccept i tk st n | LT(n,(0# :: Happy_GHC_Exts.Int#)) -> {- nothing -} (happyReduceArr Happy_Data_Array.! rule) i tk st where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#)))))) n -> {- nothing -} happyShift new_state i tk st where new_state = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) where off = happyAdjustOffset (indexShortOffAddr happyActOffsets st) off_i = (off Happy_GHC_Exts.+# i) check = if GTE(off_i,(0# :: Happy_GHC_Exts.Int#)) then EQ(indexShortOffAddr happyCheck off_i, i) else Prelude.False action | check = indexShortOffAddr happyTable off_i | Prelude.otherwise = indexShortOffAddr happyDefActions st indexShortOffAddr (HappyA# arr) off = Happy_GHC_Exts.narrow16Int# i where i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low) high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#))) low = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off')) off' = off Happy_GHC_Exts.*# 2# {-# INLINE happyLt #-} happyLt x y = LT(x,y) readArrayBit arr bit = Bits.testBit (Happy_GHC_Exts.I# (indexShortOffAddr arr ((unbox_int bit) `Happy_GHC_Exts.iShiftRA#` 4#))) (bit `Prelude.mod` 16) where unbox_int (Happy_GHC_Exts.I# x) = x data HappyAddr = HappyA# Happy_GHC_Exts.Addr# ----------------------------------------------------------------------------- -- HappyState data type (not arrays) ----------------------------------------------------------------------------- -- Shifting a token happyShift new_state 0# tk st sts stk@(x `HappyStk` _) = let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in -- trace "shifting the error token" $ happyDoAction i tk new_state (HappyCons (st) (sts)) (stk) happyShift new_state i tk st sts stk = happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk) -- happyReduce is specialised for the common cases. happySpecReduce_0 i fn 0# tk st sts stk = happyFail [] 0# tk st sts stk happySpecReduce_0 nt fn j tk st@((action)) sts stk = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk) happySpecReduce_1 i fn 0# tk st sts stk = happyFail [] 0# tk st sts stk happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk') = let r = fn v1 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happySpecReduce_2 i fn 0# tk st sts stk = happyFail [] 0# tk st sts stk happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk') = let r = fn v1 v2 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happySpecReduce_3 i fn 0# tk st sts stk = happyFail [] 0# tk st sts stk happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk') = let r = fn v1 v2 v3 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happyReduce k i fn 0# tk st sts stk = happyFail [] 0# tk st sts stk happyReduce k nt fn j tk st sts stk = case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of sts1@((HappyCons (st1@(action)) (_))) -> let r = fn stk in -- it doesn't hurt to always seq here... happyDoSeq r (happyGoto nt j tk st1 sts1 r) happyMonadReduce k nt fn 0# tk st sts stk = happyFail [] 0# tk st sts stk happyMonadReduce k nt fn j tk st sts stk = case happyDrop k (HappyCons (st) (sts)) of sts1@((HappyCons (st1@(action)) (_))) -> let drop_stk = happyDropStk k stk in happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk)) happyMonad2Reduce k nt fn 0# tk st sts stk = happyFail [] 0# tk st sts stk happyMonad2Reduce k nt fn j tk st sts stk = case happyDrop k (HappyCons (st) (sts)) of sts1@((HappyCons (st1@(action)) (_))) -> let drop_stk = happyDropStk k stk off = happyAdjustOffset (indexShortOffAddr happyGotoOffsets st1) off_i = (off Happy_GHC_Exts.+# nt) new_state = indexShortOffAddr happyTable off_i in happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk)) happyDrop 0# l = l happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t happyDropStk 0# l = l happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs ----------------------------------------------------------------------------- -- Moving to a new state after a reduction happyGoto nt j tk st = {- nothing -} happyDoAction j tk new_state where off = happyAdjustOffset (indexShortOffAddr happyGotoOffsets st) off_i = (off Happy_GHC_Exts.+# nt) new_state = indexShortOffAddr happyTable off_i ----------------------------------------------------------------------------- -- Error recovery (ERROR_TOK is the error token) -- parse error if we are in recovery and we fail again happyFail explist 0# tk old_st _ stk@(x `HappyStk` _) = let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in -- trace "failing" $ happyError_ explist i tk {- We don't need state discarding for our restricted implementation of "error". In fact, it can cause some bogus parses, so I've disabled it for now --SDM -- discard a state happyFail ERROR_TOK tk old_st CONS(HAPPYSTATE(action),sts) (saved_tok `HappyStk` _ `HappyStk` stk) = -- trace ("discarding state, depth " ++ show (length stk)) $ DO_ACTION(action,ERROR_TOK,tk,sts,(saved_tok`HappyStk`stk)) -} -- Enter error recovery: generate an error token, -- save the old token and carry on. happyFail explist i tk (action) sts stk = -- trace "entering error recovery" $ happyDoAction 0# tk action sts ((Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk) -- Internal happy errors: notHappyAtAll :: a notHappyAtAll = Prelude.error "Internal Happy error\n" ----------------------------------------------------------------------------- -- Hack to get the typechecker to accept our action functions happyTcHack :: Happy_GHC_Exts.Int# -> a -> a happyTcHack x y = y {-# INLINE happyTcHack #-} ----------------------------------------------------------------------------- -- Seq-ing. If the --strict flag is given, then Happy emits -- happySeq = happyDoSeq -- otherwise it emits -- happySeq = happyDontSeq happyDoSeq, happyDontSeq :: a -> b -> b happyDoSeq a b = a `Prelude.seq` b happyDontSeq a b = b ----------------------------------------------------------------------------- -- Don't inline any functions from the template. GHC has a nasty habit -- of deciding to inline happyGoto everywhere, which increases the size of -- the generated parser quite a bit. {-# NOINLINE happyDoAction #-} {-# NOINLINE happyTable #-} {-# NOINLINE happyCheck #-} {-# NOINLINE happyActOffsets #-} {-# NOINLINE happyGotoOffsets #-} {-# NOINLINE happyDefActions #-} {-# NOINLINE happyShift #-} {-# NOINLINE happySpecReduce_0 #-} {-# NOINLINE happySpecReduce_1 #-} {-# NOINLINE happySpecReduce_2 #-} {-# NOINLINE happySpecReduce_3 #-} {-# NOINLINE happyReduce #-} {-# NOINLINE happyMonadReduce #-} {-# NOINLINE happyGoto #-} {-# NOINLINE happyFail #-} -- end of Happy Template.