module Algorithms.Geometry.LineSegmentIntersection.Types where
import Control.Lens
import Data.Ext
import Data.Geometry.Interval
import Data.Geometry.LineSegment
import Data.Geometry.Point
import Data.Geometry.Properties
import Data.List.NonEmpty (NonEmpty(..))
import qualified Data.List.NonEmpty as NonEmpty
import qualified Data.List as L
import qualified Data.Map as Map
import Data.Semigroup
endPoints' :: (HasEnd s, HasStart s) => s -> (StartCore s, EndCore s)
endPoints' s = (s^.start.core,s^.end.core)
type Set' l =
Map.Map (Point (Dimension l) (NumType l), Point (Dimension l) (NumType l)) (NonEmpty l)
data Associated p r = Associated { _endPointOf :: Set' (LineSegment 2 p r)
, _interiorTo :: Set' (LineSegment 2 p r)
} deriving (Show)
instance (Eq p, Eq r) => Eq (Associated p r) where
(Associated es is) == (Associated es' is') = f es es' && f is is'
where
f xs ys = and $ zipWith (\(p,pa) (q,qa) -> p == q && pa `sameElements` qa)
(Map.toAscList xs) (Map.toAscList ys)
g = L.nub . NonEmpty.toList
sameElements (g -> xs) (g -> ys) = L.null $ (xs L.\\ ys) ++ (ys L.\\ xs)
associated :: Ord r
=> [LineSegment 2 p r] -> [LineSegment 2 p r] -> Associated p r
associated es is = Associated (f es) (f is)
where
f = foldr (\s -> Map.insertWith (<>) (endPoints' s) (s :| [])) mempty
endPointOf :: Associated p r -> [LineSegment 2 p r]
endPointOf = concatMap NonEmpty.toList . Map.elems . _endPointOf
interiorTo :: Associated p r -> [LineSegment 2 p r]
interiorTo = concatMap NonEmpty.toList . Map.elems . _interiorTo
instance Ord r => Semigroup (Associated p r) where
(Associated es is) <> (Associated es' is') = Associated (es <> es') (is <> is')
instance Ord r => Monoid (Associated p r) where
mempty = Associated mempty mempty
mappend = (<>)
type Intersections p r = Map.Map (Point 2 r) (Associated p r)
data IntersectionPoint p r =
IntersectionPoint { _intersectionPoint :: !(Point 2 r)
, _associatedSegs :: !(Associated p r)
} deriving (Show,Eq)
makeLenses ''IntersectionPoint