module Data.Histogram.Bin.BinF (
BinF
, binF
, binFn
, binFstep
, scaleBinF
, BinD
, binD
, binDn
, binDstep
, scaleBinD
) where
import Control.DeepSeq (NFData(..))
import Control.Monad (liftM3)
import GHC.Float (double2Int)
import Data.Data (Data,Typeable)
import Text.Read (Read(..))
import Data.Histogram.Bin.Classes
import Data.Histogram.Bin.Read
data BinF f = BinF !f
!f
!Int
deriving (Data,Typeable,Eq)
binF :: RealFrac f =>
f
-> Int
-> f
-> BinF f
binF from n to = BinF from ((to from) / fromIntegral n) n
binFn :: RealFrac f =>
f
-> f
-> f
-> BinF f
binFn from step to
| n <= 0 = error "Data.Histogram.Bin.BinF.binFn: nonpositive number of bins"
| otherwise = BinF from step n
where
n = round $ (to from) / step
binFstep :: RealFrac f =>
f
-> f
-> Int
-> BinF f
binFstep from step n
| n <= 0 = error "Data.Histogram.Bin.BinF.binFstep: nonpositive number of bins"
| step < 0 = BinF (from + step * fromIntegral n) (step) n
| otherwise = BinF from step n
scaleBinF :: (Show f, RealFrac f) => f -> f -> BinF f -> BinF f
scaleBinF a b (BinF base step n)
| b > 0 = BinF (a + b*base) (b*step) n
| otherwise = error $ "scaleBinF: b must be positive (b = "++show b++")"
instance RealFrac f => Bin (BinF f) where
type BinValue (BinF f) = f
toIndex !(BinF from step _) !x = floor $ (xfrom) / step
fromIndex !(BinF from step _) !i = (step/2) + (fromIntegral i * step) + from
nBins !(BinF _ _ n) = n
instance RealFrac f => IntervalBin (BinF f) where
binInterval (BinF from step _) i = (x, x + step) where x = from + step * fromIntegral i
instance RealFrac f => Bin1D (BinF f) where
lowerLimit (BinF from _ _) = from
upperLimit (BinF from step n) = from + step * fromIntegral n
instance RealFrac f => SliceableBin (BinF f) where
unsafeSliceBin i j (BinF from step _) = BinF (from + step * fromIntegral i) step (ji+1)
instance RealFrac f => MergeableBin (BinF f) where
unsafeMergeBins dir k b@(BinF base step _) =
case dir of
CutLower -> BinF (base + r) (step * fromIntegral k) n
CutHigher -> BinF base (step * fromIntegral k) n
where
n = nBins b `div` k
r = fromIntegral (nBins b n * k) * step
instance RealFrac f => VariableBin (BinF f) where
binSizeN (BinF _ step _) _ = step
instance RealFrac f => UniformBin (BinF f) where
binSize (BinF _ step _) = step
instance RealFloat f => BinEq (BinF f) where
binEq (BinF lo d n) (BinF lo' d' n')
= n == n'
&& abs (d d' ) < eps * abs d
&& abs (lo lo') < dlo
where
dlo = eps * fromIntegral n * d
eps = 2 ** (0.66 * fromIntegral (floatDigits lo))
instance Show f => Show (BinF f) where
show (BinF base step n) = unlines [ "# BinF"
, "# Base = " ++ show base
, "# Step = " ++ show step
, "# N = " ++ show n
]
instance (Read f, RealFrac f) => Read (BinF f) where
readPrec = keyword "BinF" >> liftM3 BinF (value "Base") (value "Step") (value "N")
instance NFData f => NFData (BinF f) where
rnf (BinF a b _) = rnf a `seq` rnf b
data BinD = BinD !Double
!Double
!Int
deriving (Data,Typeable,Eq)
binD :: Double
-> Int
-> Double
-> BinD
binD from n to = BinD from ((to from) / fromIntegral n) n
binDn :: Double
-> Double
-> Double
-> BinD
binDn from step to
| n <= 0 = error "Data.Histogram.Bin.BinF.binDn: nonpositive number of bins"
| otherwise = BinD from step n
where
n = round $ (to from) / step
binDstep :: Double
-> Double
-> Int
-> BinD
binDstep from step n
| n <= 0 = error "Data.Histogram.Bin.BinF.binDstep: nonpositive number of bins"
| step < 0 = BinD (from + step * fromIntegral n) (step) n
| otherwise = BinD from step n
scaleBinD :: Double -> Double -> BinD -> BinD
scaleBinD a b (BinD base step n)
| b > 0 = BinD (a + b*base) (b*step) n
| otherwise = error $ "scaleBinF: b must be positive (b = "++show b++")"
floorD :: Double -> Int
floorD x | x < 0 = double2Int x 1
| otherwise = double2Int x
instance Bin BinD where
type BinValue BinD = Double
toIndex !(BinD from step _) !x = floorD $ (xfrom) / step
fromIndex !(BinD from step _) !i = (step/2) + (fromIntegral i * step) + from
nBins !(BinD _ _ n) = n
instance IntervalBin BinD where
binInterval (BinD from step _) i = (x, x + step) where x = from + step * fromIntegral i
instance Bin1D BinD where
lowerLimit (BinD from _ _) = from
upperLimit (BinD from step n) = from + step * fromIntegral n
instance SliceableBin BinD where
unsafeSliceBin i j (BinD from step _) = BinD (from + step * fromIntegral i) step (ji+1)
instance MergeableBin BinD where
unsafeMergeBins dir k b@(BinD base step _) =
case dir of
CutLower -> BinD (base + r) (step * fromIntegral k) n
CutHigher -> BinD base (step * fromIntegral k) n
where
n = nBins b `div` k
r = fromIntegral (nBins b n * k) * step
instance VariableBin BinD where
binSizeN (BinD _ step _) _ = step
instance UniformBin BinD where
binSize (BinD _ step _) = step
instance BinEq BinD where
binEq (BinD lo d n) (BinD lo' d' n')
= n == n'
&& abs (d d' ) < eps * abs d
&& abs (lo lo') < dlo
where
dlo = eps * fromIntegral n * d
eps = 3e-11
instance Show BinD where
show (BinD base step n) = unlines [ "# BinD"
, "# Base = " ++ show base
, "# Step = " ++ show step
, "# N = " ++ show n
]
instance Read BinD where
readPrec = keyword "BinD" >> liftM3 BinD (value "Base") (value "Step") (value "N")
instance NFData BinD where
rnf b = b `seq` ()