module Data.Packed.Internal.Numeric (
ident, diag, ctrans,
Container(..),
scalar, conj, scale, arctan2, cmap,
atIndex, minIndex, maxIndex, minElement, maxElement,
sumElements, prodElements,
step, cond, find, assoc, accum,
Transposable(..), Linear(..), Testable(..),
Product(..), udot,
mXm,mXv,vXm,
outer, kronecker,
sortVector,
Convert(..),
Complexable(),
RealElement(),
roundVector,
RealOf, ComplexOf, SingleOf, DoubleOf,
IndexOf,
module Data.Complex
) where
import Data.Packed
import Data.Packed.ST as ST
import Numeric.Conversion
import Data.Packed.Development
import Numeric.Vectorized
import Data.Complex
import Control.Applicative((<*>))
import Numeric.LinearAlgebra.LAPACK(multiplyR,multiplyC,multiplyF,multiplyQ)
import Data.Packed.Internal
type family IndexOf (c :: * -> *)
type instance IndexOf Vector = Int
type instance IndexOf Matrix = (Int,Int)
type family ArgOf (c :: * -> *) a
type instance ArgOf Vector a = a -> a
type instance ArgOf Matrix a = a -> a -> a
class (Complexable c, Fractional e, Element e) => Container c e
where
size' :: c e -> IndexOf c
scalar' :: e -> c e
conj' :: c e -> c e
scale' :: e -> c e -> c e
scaleRecip :: e -> c e -> c e
addConstant :: e -> c e -> c e
add :: c e -> c e -> c e
sub :: c e -> c e -> c e
mul :: c e -> c e -> c e
divide :: c e -> c e -> c e
equal :: c e -> c e -> Bool
arctan2' :: c e -> c e -> c e
cmap' :: (Element b) => (e -> b) -> c e -> c b
konst' :: e -> IndexOf c -> c e
build' :: IndexOf c -> (ArgOf c e) -> c e
atIndex' :: c e -> IndexOf c -> e
minIndex' :: c e -> IndexOf c
maxIndex' :: c e -> IndexOf c
minElement' :: c e -> e
maxElement' :: c e -> e
sumElements' :: c e -> e
prodElements' :: c e -> e
step' :: RealElement e => c e -> c e
cond' :: RealElement e
=> c e
-> c e
-> c e
-> c e
-> c e
-> c e
find' :: (e -> Bool) -> c e -> [IndexOf c]
assoc' :: IndexOf c
-> e
-> [(IndexOf c, e)]
-> c e
accum' :: c e
-> (e -> e -> e)
-> [(IndexOf c, e)]
-> c e
instance Container Vector Float
where
size' = dim
scale' = vectorMapValF Scale
scaleRecip = vectorMapValF Recip
addConstant = vectorMapValF AddConstant
add = vectorZipF Add
sub = vectorZipF Sub
mul = vectorZipF Mul
divide = vectorZipF Div
equal u v = dim u == dim v && maxElement (vectorMapF Abs (sub u v)) == 0.0
arctan2' = vectorZipF ATan2
scalar' x = fromList [x]
konst' = constantD
build' = buildV
conj' = id
cmap' = mapVector
atIndex' = (@>)
minIndex' = emptyErrorV "minIndex" (round . toScalarF MinIdx)
maxIndex' = emptyErrorV "maxIndex" (round . toScalarF MaxIdx)
minElement' = emptyErrorV "minElement" (toScalarF Min)
maxElement' = emptyErrorV "maxElement" (toScalarF Max)
sumElements' = sumF
prodElements' = prodF
step' = stepF
find' = findV
assoc' = assocV
accum' = accumV
cond' = condV condF
instance Container Vector Double
where
size' = dim
scale' = vectorMapValR Scale
scaleRecip = vectorMapValR Recip
addConstant = vectorMapValR AddConstant
add = vectorZipR Add
sub = vectorZipR Sub
mul = vectorZipR Mul
divide = vectorZipR Div
equal u v = dim u == dim v && maxElement (vectorMapR Abs (sub u v)) == 0.0
arctan2' = vectorZipR ATan2
scalar' x = fromList [x]
konst' = constantD
build' = buildV
conj' = id
cmap' = mapVector
atIndex' = (@>)
minIndex' = emptyErrorV "minIndex" (round . toScalarR MinIdx)
maxIndex' = emptyErrorV "maxIndex" (round . toScalarR MaxIdx)
minElement' = emptyErrorV "minElement" (toScalarR Min)
maxElement' = emptyErrorV "maxElement" (toScalarR Max)
sumElements' = sumR
prodElements' = prodR
step' = stepD
find' = findV
assoc' = assocV
accum' = accumV
cond' = condV condD
instance Container Vector (Complex Double)
where
size' = dim
scale' = vectorMapValC Scale
scaleRecip = vectorMapValC Recip
addConstant = vectorMapValC AddConstant
add = vectorZipC Add
sub = vectorZipC Sub
mul = vectorZipC Mul
divide = vectorZipC Div
equal u v = dim u == dim v && maxElement (mapVector magnitude (sub u v)) == 0.0
arctan2' = vectorZipC ATan2
scalar' x = fromList [x]
konst' = constantD
build' = buildV
conj' = conjugateC
cmap' = mapVector
atIndex' = (@>)
minIndex' = emptyErrorV "minIndex" (minIndex' . fst . fromComplex . (mul <*> conj'))
maxIndex' = emptyErrorV "maxIndex" (maxIndex' . fst . fromComplex . (mul <*> conj'))
minElement' = emptyErrorV "minElement" (atIndex' <*> minIndex')
maxElement' = emptyErrorV "maxElement" (atIndex' <*> maxIndex')
sumElements' = sumC
prodElements' = prodC
step' = undefined
find' = findV
assoc' = assocV
accum' = accumV
cond' = undefined
instance Container Vector (Complex Float)
where
size' = dim
scale' = vectorMapValQ Scale
scaleRecip = vectorMapValQ Recip
addConstant = vectorMapValQ AddConstant
add = vectorZipQ Add
sub = vectorZipQ Sub
mul = vectorZipQ Mul
divide = vectorZipQ Div
equal u v = dim u == dim v && maxElement (mapVector magnitude (sub u v)) == 0.0
arctan2' = vectorZipQ ATan2
scalar' x = fromList [x]
konst' = constantD
build' = buildV
conj' = conjugateQ
cmap' = mapVector
atIndex' = (@>)
minIndex' = emptyErrorV "minIndex" (minIndex' . fst . fromComplex . (mul <*> conj'))
maxIndex' = emptyErrorV "maxIndex" (maxIndex' . fst . fromComplex . (mul <*> conj'))
minElement' = emptyErrorV "minElement" (atIndex' <*> minIndex')
maxElement' = emptyErrorV "maxElement" (atIndex' <*> maxIndex')
sumElements' = sumQ
prodElements' = prodQ
step' = undefined
find' = findV
assoc' = assocV
accum' = accumV
cond' = undefined
instance (Fractional a, Element a, Container Vector a) => Container Matrix a
where
size' = size
scale' x = liftMatrix (scale' x)
scaleRecip x = liftMatrix (scaleRecip x)
addConstant x = liftMatrix (addConstant x)
add = liftMatrix2 add
sub = liftMatrix2 sub
mul = liftMatrix2 mul
divide = liftMatrix2 divide
equal a b = cols a == cols b && flatten a `equal` flatten b
arctan2' = liftMatrix2 arctan2'
scalar' x = (1><1) [x]
konst' v (r,c) = matrixFromVector RowMajor r c (konst' v (r*c))
build' = buildM
conj' = liftMatrix conj'
cmap' f = liftMatrix (mapVector f)
atIndex' = (@@>)
minIndex' = emptyErrorM "minIndex of Matrix" $
\m -> divMod (minIndex' $ flatten m) (cols m)
maxIndex' = emptyErrorM "maxIndex of Matrix" $
\m -> divMod (maxIndex' $ flatten m) (cols m)
minElement' = emptyErrorM "minElement of Matrix" (atIndex' <*> minIndex')
maxElement' = emptyErrorM "maxElement of Matrix" (atIndex' <*> maxIndex')
sumElements' = sumElements . flatten
prodElements' = prodElements . flatten
step' = liftMatrix step
find' = findM
assoc' = assocM
accum' = accumM
cond' = condM
emptyErrorV msg f v =
if dim v > 0
then f v
else error $ msg ++ " of Vector with dim = 0"
emptyErrorM msg f m =
if rows m > 0 && cols m > 0
then f m
else error $ msg++" "++shSize m
scalar :: Container c e => e -> c e
scalar = scalar'
conj :: Container c e => c e -> c e
conj = conj'
scale :: Container c e => e -> c e -> c e
scale = scale'
arctan2 :: Container c e => c e -> c e -> c e
arctan2 = arctan2'
cmap :: (Element b, Container c e) => (e -> b) -> c e -> c b
cmap = cmap'
atIndex :: Container c e => c e -> IndexOf c -> e
atIndex = atIndex'
minIndex :: Container c e => c e -> IndexOf c
minIndex = minIndex'
maxIndex :: Container c e => c e -> IndexOf c
maxIndex = maxIndex'
minElement :: Container c e => c e -> e
minElement = minElement'
maxElement :: Container c e => c e -> e
maxElement = maxElement'
sumElements :: Container c e => c e -> e
sumElements = sumElements'
prodElements :: Container c e => c e -> e
prodElements = prodElements'
step
:: (RealElement e, Container c e)
=> c e
-> c e
step = step'
cond
:: (RealElement e, Container c e)
=> c e
-> c e
-> c e
-> c e
-> c e
-> c e
cond = cond'
find
:: Container c e
=> (e -> Bool)
-> c e
-> [IndexOf c]
find = find'
assoc
:: Container c e
=> IndexOf c
-> e
-> [(IndexOf c, e)]
-> c e
assoc = assoc'
accum
:: Container c e
=> c e
-> (e -> e -> e)
-> [(IndexOf c, e)]
-> c e
accum = accum'
class (Num e, Element e) => Product e where
multiply :: Matrix e -> Matrix e -> Matrix e
absSum :: Vector e -> RealOf e
norm1 :: Vector e -> RealOf e
norm2 :: Vector e -> RealOf e
normInf :: Vector e -> RealOf e
instance Product Float where
norm2 = emptyVal (toScalarF Norm2)
absSum = emptyVal (toScalarF AbsSum)
norm1 = emptyVal (toScalarF AbsSum)
normInf = emptyVal (maxElement . vectorMapF Abs)
multiply = emptyMul multiplyF
instance Product Double where
norm2 = emptyVal (toScalarR Norm2)
absSum = emptyVal (toScalarR AbsSum)
norm1 = emptyVal (toScalarR AbsSum)
normInf = emptyVal (maxElement . vectorMapR Abs)
multiply = emptyMul multiplyR
instance Product (Complex Float) where
norm2 = emptyVal (toScalarQ Norm2)
absSum = emptyVal (toScalarQ AbsSum)
norm1 = emptyVal (sumElements . fst . fromComplex . vectorMapQ Abs)
normInf = emptyVal (maxElement . fst . fromComplex . vectorMapQ Abs)
multiply = emptyMul multiplyQ
instance Product (Complex Double) where
norm2 = emptyVal (toScalarC Norm2)
absSum = emptyVal (toScalarC AbsSum)
norm1 = emptyVal (sumElements . fst . fromComplex . vectorMapC Abs)
normInf = emptyVal (maxElement . fst . fromComplex . vectorMapC Abs)
multiply = emptyMul multiplyC
emptyMul m a b
| x1 == 0 && x2 == 0 || r == 0 || c == 0 = konst' 0 (r,c)
| otherwise = m a b
where
r = rows a
x1 = cols a
x2 = rows b
c = cols b
emptyVal f v =
if dim v > 0
then f v
else 0
udot :: Product e => Vector e -> Vector e -> e
udot u v
| dim u == dim v = val (asRow u `multiply` asColumn v)
| otherwise = error $ "different dimensions "++show (dim u)++" and "++show (dim v)++" in dot product"
where
val m | dim u > 0 = m@@>(0,0)
| otherwise = 0
mXm :: Product t => Matrix t -> Matrix t -> Matrix t
mXm = multiply
mXv :: Product t => Matrix t -> Vector t -> Vector t
mXv m v = flatten $ m `mXm` (asColumn v)
vXm :: Product t => Vector t -> Matrix t -> Vector t
vXm v m = flatten $ (asRow v) `mXm` m
outer :: (Product t) => Vector t -> Vector t -> Matrix t
outer u v = asColumn u `multiply` asRow v
kronecker :: (Product t) => Matrix t -> Matrix t -> Matrix t
kronecker a b = fromBlocks
. splitEvery (cols a)
. map (reshape (cols b))
. toRows
$ flatten a `outer` flatten b
class Convert t where
real :: Container c t => c (RealOf t) -> c t
complex :: Container c t => c t -> c (ComplexOf t)
single :: Container c t => c t -> c (SingleOf t)
double :: Container c t => c t -> c (DoubleOf t)
toComplex :: (Container c t, RealElement t) => (c t, c t) -> c (Complex t)
fromComplex :: (Container c t, RealElement t) => c (Complex t) -> (c t, c t)
instance Convert Double where
real = id
complex = comp'
single = single'
double = id
toComplex = toComplex'
fromComplex = fromComplex'
instance Convert Float where
real = id
complex = comp'
single = id
double = double'
toComplex = toComplex'
fromComplex = fromComplex'
instance Convert (Complex Double) where
real = comp'
complex = id
single = single'
double = id
toComplex = toComplex'
fromComplex = fromComplex'
instance Convert (Complex Float) where
real = comp'
complex = id
single = id
double = double'
toComplex = toComplex'
fromComplex = fromComplex'
type family RealOf x
type instance RealOf Double = Double
type instance RealOf (Complex Double) = Double
type instance RealOf Float = Float
type instance RealOf (Complex Float) = Float
type family ComplexOf x
type instance ComplexOf Double = Complex Double
type instance ComplexOf (Complex Double) = Complex Double
type instance ComplexOf Float = Complex Float
type instance ComplexOf (Complex Float) = Complex Float
type family SingleOf x
type instance SingleOf Double = Float
type instance SingleOf Float = Float
type instance SingleOf (Complex a) = Complex (SingleOf a)
type family DoubleOf x
type instance DoubleOf Double = Double
type instance DoubleOf Float = Double
type instance DoubleOf (Complex a) = Complex (DoubleOf a)
type family ElementOf c
type instance ElementOf (Vector a) = a
type instance ElementOf (Matrix a) = a
buildM (rc,cc) f = fromLists [ [f r c | c <- cs] | r <- rs ]
where rs = map fromIntegral [0 .. (rc1)]
cs = map fromIntegral [0 .. (cc1)]
buildV n f = fromList [f k | k <- ks]
where ks = map fromIntegral [0 .. (n1)]
ctrans :: (Container Vector e, Element e) => Matrix e -> Matrix e
ctrans = liftMatrix conj' . trans
diag :: (Num a, Element a) => Vector a -> Matrix a
diag v = diagRect 0 v n n where n = dim v
ident :: (Num a, Element a) => Int -> Matrix a
ident n = diag (constantD 1 n)
findV p x = foldVectorWithIndex g [] x where
g k z l = if p z then k:l else l
findM p x = map ((`divMod` cols x)) $ findV p (flatten x)
assocV n z xs = ST.runSTVector $ do
v <- ST.newVector z n
mapM_ (\(k,x) -> ST.writeVector v k x) xs
return v
assocM (r,c) z xs = ST.runSTMatrix $ do
m <- ST.newMatrix z r c
mapM_ (\((i,j),x) -> ST.writeMatrix m i j x) xs
return m
accumV v0 f xs = ST.runSTVector $ do
v <- ST.thawVector v0
mapM_ (\(k,x) -> ST.modifyVector v k (f x)) xs
return v
accumM m0 f xs = ST.runSTMatrix $ do
m <- ST.thawMatrix m0
mapM_ (\((i,j),x) -> ST.modifyMatrix m i j (f x)) xs
return m
condM a b l e t = matrixFromVector RowMajor (rows a'') (cols a'') $ cond a' b' l' e' t'
where
args@(a'':_) = conformMs [a,b,l,e,t]
[a', b', l', e', t'] = map flatten args
condV f a b l e t = f a' b' l' e' t'
where
[a', b', l', e', t'] = conformVs [a,b,l,e,t]
class Transposable m mt | m -> mt, mt -> m
where
tr :: m -> mt
instance (Container Vector t) => Transposable (Matrix t) (Matrix t)
where
tr = ctrans
class Linear t v
where
scalarL :: t -> v
addL :: v -> v -> v
scaleL :: t -> v -> v
class Testable t
where
checkT :: t -> (Bool, IO())
ioCheckT :: t -> IO (Bool, IO())
ioCheckT = return . checkT