module Numeric.GSL.Tests(
runTests
) where
import Control.Monad(when)
import System.Exit (exitFailure)
import Test.HUnit (runTestTT, failures, Test(..), errors)
import Numeric.LinearAlgebra
import Numeric.GSL
import Numeric.LinearAlgebra.Tests (qCheck, utest)
import Numeric.LinearAlgebra.Tests.Properties ((|~|), (~~))
fittingTest = utest "levmar" (ok1 && ok2)
where
xs = map return [0 .. 39]
sigma = 0.1
ys = map return $ toList $ fromList (map (head . expModel [5,0.1,1]) xs)
+ scalar sigma * (randomVector 0 Gaussian 40)
dats = zip xs (zip ys (repeat sigma))
dat = zip xs ys
expModel [a,lambda,b] [t] = [a * exp (lambda * t) + b]
expModelDer [a,lambda,_b] [t] = [[exp (lambda * t), t * a * exp(lambda*t) , 1]]
sols = fst $ fitModelScaled 1E-4 1E-4 20 (expModel, expModelDer) dats [1,0,0]
sol = fst $ fitModel 1E-4 1E-4 20 (expModel, expModelDer) dat [1,0,0]
ok1 = and (zipWith f sols [5,0.1,1]) where f (x,d) r = abs (xr)<2*d
ok2 = norm2 (fromList (map fst sols) fromList sol) < 1E-5
odeTest = utest "ode" (last (toLists sol) ~~ newsol)
where
sol = odeSolveV RK8pd 1E-6 1E-6 0 (l2v $ vanderpol 10) (fromList [1,0]) ts
ts = linspace 101 (0,100)
l2v f = \t -> fromList . f t . toList
vanderpol mu _t [x,y] = [y, x + mu * y * (1x**2) ]
newsol = [1.758888036617841, 8.364349410519058e-2]
rootFindingTest = TestList [ utest "root Hybrids" (fst sol1 ~~ [1,1])
, utest "root Newton" (rows (snd sol2) == 2)
]
where sol1 = root Hybrids 1E-7 30 (rosenbrock 1 10) [10,5]
sol2 = rootJ Newton 1E-7 30 (rosenbrock 1 10) (jacobian 1 10) [10,5]
rosenbrock a b [x,y] = [ a*(1x), b*(yx**2) ]
jacobian a b [x,_y] = [ [a , 0]
, [2*b*x, b] ]
minimizationTest = TestList
[ utest "minimization conjugatefr" (minim1 f df [5,7] ~~ [1,2])
, utest "minimization nmsimplex2" (minim2 f [5,7] `elem` [24,25])
]
where f [x,y] = 10*(x1)**2 + 20*(y2)**2 + 30
df [x,y] = [20*(x1), 40*(y2)]
minim1 g dg ini = fst $ minimizeD ConjugateFR 1E-3 30 1E-2 1E-4 g dg ini
minim2 g ini = rows $ snd $ minimize NMSimplex2 1E-2 30 [1,1] g ini
derivTest = abs (d (\x-> x * d (\y-> x+y) 1) 1 1) < 1E-10
where d f x = fst $ derivCentral 0.01 f x
quad f a b = fst $ integrateQAGS 1E-9 100 f a b
quad2 f a b g1 g2 = quad h a b
where h x = quad (f x) (g1 x) (g2 x)
volSphere r = 8 * quad2 (\x y -> sqrt (r*rx*xy*y))
0 r (const 0) (\x->sqrt (r*rx*x))
polyEval cs x = foldr (\c ac->ac*x+c) 0 cs
polySolveProp p = length p <2 || last p == 0|| 1E-8 > maximum (map magnitude $ map (polyEval (map (:+0) p)) (polySolve p))
runTests :: Int
-> IO ()
runTests n = do
let test p = qCheck n p
putStrLn "------ fft"
test (\v -> ifft (fft v) |~| v)
c <- runTestTT $ TestList
[ fittingTest
, odeTest
, rootFindingTest
, minimizationTest
, utest "deriv" derivTest
, utest "integrate" (abs (volSphere 2.5 4/3*pi*2.5**3) < 1E-8)
, utest "polySolve" (polySolveProp [1,2,3,4])
]
when (errors c + failures c > 0) exitFailure
return ()