{- | Interpolation functions, ie. for envelope segments. Present naming is for qualified import. -} module Sound.Sc3.Common.Math.Interpolate where import qualified Sound.Sc3.Common.Math as Math {- hsc3 -} {- | An interpolation function takes three arguments. x0 is the left or begin value, x1 is the right or end value, t is a (0,1) index. -} type Interpolation_f t = t -> t -> t -> t {- | Clip x to (0,1) and run f. >>> interpolate linear (-1,1) 0.5 0.0 -} interpolate :: (Num t, Ord t) => Interpolation_f t -> (t, t) -> t -> t interpolate f (l, r) x = if x < 0 then l else if x > 1 then r else f l r x -- | Step function, ignores t and returns x1. step :: Interpolation_f t step _ x1 _ = x1 {- | Linear interpolation funtion. >>> map (linear 1 10) [0,0.25 .. 1] [1.0,3.25,5.5,7.75,10.0] > import Sound.Sc3.Plot {\- hsc3-plot -\} > plot_fn_r1_ln (linear (-1) 1) (0,1) -} linear :: Num t => Interpolation_f t linear x0 x1 t = t * (x1 - x0) + x0 {- | Exponential interpolation. x0 must not be zero and (x0,x1) must not span zero. > plot_fn_r1_ln [exponential 0.001 1] (0,1) > plot_fn_r1_ln [exponential 1 2] (0,1) > plot_fn_r1_ln [exponential 20 20000] (0,1) -} exponential :: Floating t => Interpolation_f t exponential x0 x1 t = x0 * ((x1 / x0) ** t) {- | Variant that allows x0 to be zero, though (x0,x1) must not span zero. > plot_fn_r1_ln [exponential_0 0 1] (0,1) > plot_fn_r1_ln [exponential_0 0 (-1)] (0,1) -} exponential_0 :: (Eq t, Floating t) => Interpolation_f t exponential_0 x0 x1 = let epsilon = 1e-6 x0' = if x0 == 0 then epsilon * signum x1 else x0 in exponential x0' x1 {- | 'linear' of 'exponential_0' of (0,1), ie. allows (x0,x1) to span zero. > plot_fn_r1_ln [exponential_lin (-1) 1] (0,1) -} exponential_lin :: (Eq t, Floating t) => Interpolation_f t exponential_lin x0 x1 t = linear x0 x1 (exponential_0 0 1 t) {- | 'linear' with t transformed by sine function over (-pi/2,pi/2). > plot_fn_r1_ln [sine (-1) 1] (0,1) > plot_fn_r1_ln [sine 1 (-1)] (0,1) -} sine :: Floating t => Interpolation_f t sine x0 x1 t = let t' = -cos (pi * t) * 0.5 + 0.5 in linear x0 x1 t' {- | If x0 '<' x1 rising sine segment (0,pi/2), else falling segment (pi/2,pi). > plot_fn_r1_ln [welch (-1) 1] (0,1) > plot_fn_r1_ln [welch 1 (-1)] (0,1) -} welch :: (Ord t, Floating t) => Interpolation_f t welch x0 x1 t = if x0 < x1 then x0 + (x1 - x0) * sin (Math.half_pi * t) else x1 - (x1 - x0) * sin (Math.half_pi - (Math.half_pi * t)) {- | Curvature controlled by single parameter c. Zero is 'linear', increasing c approaches 'exponential' and continues past it. The value for c at which the curve is close to exponential depends on the range. > plot_p1_ln (map (\c-> map (curve c (-1) 1) [0,0.01 .. 1]) [-6,-4 .. 6]) > plot_p1_ln (map (\f -> map f [0,0.01 .. 1]) [curve 4.4 1 100,exponential 1 100,curve 4.5 1 100]) > plot_p1_ln (map (\f -> map f [0,0.01 .. 1]) [exponential 20 20000,curve 7 20 20000]) > plot_p1_ln (map (\f -> map f [0,0.01 .. 1]) [fader 0 2,curve 2 0 2]) -} curve :: (Ord t, Floating t) => t -> Interpolation_f t curve c x0 x1 t = if abs c < 0.0001 then linear x0 x1 t else let d = 1 - exp c n = 1 - exp (t * c) in x0 + (x1 - x0) * (n / d) {- | Square of 'linear' of 'sqrt' of x0 and x1, therefore neither may be negative. > plot_fn_r1_ln [squared 0 1] (0,1) > plot_p1_ln (map (\f -> map f [0,0.01 .. 1]) [curve 2.05 0 1,squared 0 1]) -} squared :: Floating t => Interpolation_f t squared x0 x1 t = let x0' = sqrt x0 x1' = sqrt x1 l = linear x0' x1' t in l * l {- | Cubic variant of 'squared'. > plot_fn_r1_ln [cubed 0 1] (0,1) > plot_p1_ln (map (\f -> map f [0,0.01 .. 1]) [curve 3.25 0 1,cubed 0 1]) -} cubed :: Floating t => Interpolation_f t cubed x0 x1 t = let x0' = x0 ** (1 / 3) x1' = x1 ** (1 / 3) l = linear x0' x1' t in l * l * l {- | x0 until end, then immediately x1. > plot_fn_r1_ln [hold 0 1] (0,2) -} hold :: (Num t, Ord t) => Interpolation_f t hold x0 x1 t = if t >= 1 then x1 else x0 {- | Fader curve, equal to 'squared' when x1 > x0. > plot_p1_ln (map (\f -> map f [0,0.01 .. 1]) [squared 0 1,fader 0 1]) > plot_p1_ln (map (\f -> map f [0,0.01 .. 1]) [curve 2 1 0,fader 1 0]) -} fader :: (Num t, Ord t) => Interpolation_f t fader x0 x1 t = let rng = x1 - x0 sqr i = i * i in sqr (if rng > 0 then t else 1 - (1 - t)) * rng + x0