-- | A warp is a mapping from the space @[0,1]@ to a user defined space @[l,r]@. module Sound.Sc3.Common.Math.Warp where import Numeric {- base -} import qualified Sound.Sc3.Common.Math as Math {- hsc3 -} -- | A warp function is lhs -> rhs -> x -> y type Warp_f t = t -> t -> t -> t {- | Linear real value map. >>> map (warp_lin 1 2) [0,1/2,1] == [1,3/2,2] True >>> map (warp_lin (-1) 1) [0,1/2,1] == [-1,0,1] True -} warp_lin :: Fractional t => Warp_f t warp_lin l r n = let z = r - l in n * z + l {- | Inverse of 'warp_lin' >>> map (warp_lin_inv 1 2) [1,3/2,2] == [0,1/2,1] True >>> map (warp_lin_inv (-1) 1) [-1,0,1] == [0,1/2,1] True -} warp_lin_inv :: Fractional t => Warp_f t warp_lin_inv l r n = let z = r - l in (n - l) / z {- | The left and right must both be non zero and have the same sign. >>> map (warp_exp 1 2) [0,0.5,1] == [1,2 ** 0.5,2] True > import Sound.Sc3.Plot {\- hsc3-plot -\} > plot_p1_ln [map (warp_exp 1 2) [0,0.01 .. 1]] -} warp_exp :: Floating a => Warp_f a warp_exp l r n = let z = r / l in (z ** n) * l warp_exp_inv :: Floating a => Warp_f a warp_exp_inv l r n = let z = r / l in logBase z (n / l) {- | Cosine warp > map (warp_cos 1 2) [0,0.25,0.5,0.75,1] > plot_p1_ln [map (warp_cos 1 2) [0,0.01 .. 1]] -} warp_cos :: Floating t => Warp_f t warp_cos l r n = warp_lin 0 (r - l) (0.5 - (cos (pi * n) / 2)) warp_cos_inv :: Floating a => Warp_f a warp_cos_inv l r n = acos (1.0 - (warp_lin_inv 0 (r - l) n * 2)) / pi {- | Sine warp > map (warp_sin 1 2) [0,0.25,0.5,0.75,1] > plot_p1_ln [map (warp_sin 1 2) [0,0.01 .. 1]] -} warp_sin :: Floating t => Warp_f t warp_sin l r n = warp_lin 0 (r - l) (sin (pi * 0.5 * n)) warp_sin_inv :: Floating t => Warp_f t warp_sin_inv l r n = asin (warp_lin_inv 0 (r - l) n) / (pi / 2) {- | Fader warp. Left and right values are ordinarily zero and one. > map (warp_amp 0 1) [0,0.5,1] == [0,0.25,1] > plot_p1_ln [map (warp_amp 0 2) [0,0.01 .. 1]] > plot_p1_ln [map (warp_amp_inv 0 1 . warp_amp 0 1) [0,0.01 .. 1]] -} warp_amp :: Num a => Warp_f a warp_amp l r n = (n * n) * (r - l) + l warp_amp_inv :: Floating a => Warp_f a warp_amp_inv l r n = sqrt ((n - l) / (r - l)) {- | DB fader warp. Left and right values are ordinarily negative infinity and zero. An input of @0@ gives @-180@. > map (round . warp_db (-180) 0) [0,0.5,1] == [-180,-12,0] > plot_p1_ln [map (warp_db (-60) 0) [0,0.01 .. 1]] > plot_p1_ln [map (warp_db_inv 0 60) [0 .. 60]] -} warp_db :: (Eq a, Floating a) => Warp_f a warp_db l r n = let n' = if n == 0 then -180 else Math.amp_to_db (n * n) in Math.sc3_linlin n' (-180) 0 l r warp_db_inv :: Floating a => Warp_f a warp_db_inv l r n = sqrt (Math.db_to_amp (Math.sc3_linlin n l r (-180) 0)) {- | A curve warp given by a real /n/. > warp_curve (-3) 1 2 0.25 == 1.5552791692202022 > warp_curve (-3) 1 2 0.50 == 1.8175744761936437 > plot_p1_ln [map (warp_curve (-3) 1 2) [0,0.01 .. 1]] > plot_p1_ln (map (\c -> map (warp_curve c 1 2) [0,0.01 .. 1]) [0,3,6,9]) > plot_p1_ln [map (warp_curve_inv 7 20 20000 . warp_curve 7 20 20000) [0,0.01 .. 1]] -} warp_curve :: (Ord a, Floating a) => a -> Warp_f a warp_curve k l r n = if abs k < 0.001 then warp_lin l r n else let e = exp k a = (r - l) / (1 - e) b = l + a in b - ((e ** n) * a) warp_curve_inv :: (Ord a, Floating a) => a -> Warp_f a warp_curve_inv k l r n = if abs k < 0.001 then warp_lin l r n else let e = exp k a = (r - l) / (1 - e) b = l + a in log ((b - n) / a) / k {- | Select warp functions by name. Numerical names are interpreted as /curve/ values for 'warpCurve'. > let Just w = warp_named "lin" > let Just w = warp_named "-3" > let Just w = warp_named "6" > plot_p1_ln [map ((fst w) 1 2) [0,0.01 .. 1]] -} warp_named :: (Floating t, RealFrac t) => String -> Maybe (Warp_f t, Warp_f t) warp_named nm = case nm of "lin" -> Just (warp_lin, warp_lin_inv) "exp" -> Just (warp_exp, warp_exp_inv) "sin" -> Just (warp_sin, warp_sin_inv) "cos" -> Just (warp_cos, warp_cos_inv) "amp" -> Just (warp_amp, warp_amp_inv) "db" -> Just (warp_db, warp_db_inv) _ -> case readSigned readFloat nm of [(c, "")] -> Just (warp_curve c, warp_curve_inv c) _ -> Nothing