-- | Haskell implementations of Sc3 Ugens. module Sound.Sc3.Ugen.Hs where import Data.List {- base -} import qualified Safe {- safe -} import qualified System.Random as R {- random -} import Sound.Sc3.Common.Base import Sound.Sc3.Common.Math import qualified Sound.Sc3.Common.Math.Filter as Filter -- | F = function, St = state type F_St0 st o = st -> (o, st) type F_St1 st i o = (i, st) -> (o, st) -- | U = uniform type F_U2 n = n -> n -> n type F_U3 n = n -> n -> n -> n type F_U4 n = n -> n -> n -> n -> n type F_U5 n = n -> n -> n -> n -> n -> n type F_U6 n = n -> n -> n -> n -> n -> n -> n type F_U7 n = n -> n -> n -> n -> n -> n -> n -> n type F_U8 n = n -> n -> n -> n -> n -> n -> n -> n -> n type F_U9 n = n -> n -> n -> n -> n -> n -> n -> n -> n -> n -- | T = tuple (see Base for T2-T4) type T5 n = (n, n, n, n, n) type T6 n = (n, n, n, n, n, n) type T7 n = (n, n, n, n, n, n, n) type T8 n = (n, n, n, n, n, n, n, n) type T9 n = (n, n, n, n, n, n, n, n, n) -- | avg = average avg2 :: Fractional n => F_U2 n avg2 p q = (p + q) / 2 avg3 :: Fractional n => F_U3 n avg3 p q r = (p + q + r) / 3 avg4 :: Fractional n => F_U4 n avg4 p q r s = (p + q + r + s) / 4 avg5 :: Fractional n => F_U5 n avg5 p q r s t = (p + q + r + s + t) / 5 avg9 :: Fractional n => F_U9 n avg9 p q r s t u v w x = (p + q + r + s + t + u + v + w + x) / 9 {- | fir = finite impulse response >>> l_apply_f_st1 (fir1 (\x z1 -> (x + z1) / 2)) 0 [0 .. 5] [0.0,0.5,1.5,2.5,3.5,4.5] -} fir1 :: F_U2 n -> F_St1 n n n fir1 f (n, z0) = (f n z0, n) {- | fir = finite impulse response >>> l_apply_f_st1 (fir2 (\x x1 x2 -> (x + x1 + x2) / 2)) (0,0) [0 .. 5] [0.0,0.5,1.5,3.0,4.5,6.0] -} fir2 :: F_U3 n -> F_St1 (T2 n) n n fir2 f (n, (z1, z0)) = (f n z0 z1, (z0, n)) fir3 :: F_U4 n -> F_St1 (T3 n) n n fir3 f (n, (z2, z1, z0)) = (f n z0 z1 z2, (z1, z0, n)) fir4 :: F_U5 n -> F_St1 (T4 n) n n fir4 f (n, (z3, z2, z1, z0)) = (f n z0 z1 z2 z3, (z2, z1, z0, n)) fir8 :: F_U9 n -> F_St1 (T8 n) n n fir8 f (n, (z7, z6, z5, z4, z3, z2, z1, z0)) = (f n z0 z1 z2 z3 z4 z5 z6 z7, (z6, z5, z4, z4, z2, z1, z0, n)) {- | iir = infinite impulse response >> l_apply_f_st1 (iir1 (\x y1 -> x + y1)) 0 (replicate 10 1) [1,2,3,4,5,6,7,8,9,10] -} iir1 :: F_U2 n -> F_St1 n n n iir1 f (n, y0) = let r = f n y0 in (r, r) {- | Two place iir >>> l_apply_f_st1 (iir2 (\x y1 y2 -> x + y1 + y2)) (0,0) (replicate 10 1) [1,2,4,7,12,20,33,54,88,143] >>> map (+1) [0+0,1+0,2+1,4+2,7+4,12+7,20+12,33+20,54+33,88+54] -- https://oeis.org/A000071 [1,2,4,7,12,20,33,54,88,143] -} iir2 :: F_U3 n -> F_St1 (T2 n) n n iir2 f (n, (y1, y0)) = let r = f n y0 y1 in (r, (y0, r)) -- | ff = feed-forward, fb = feed-back iir2_ff_fb :: (n -> n -> n -> T2 n) -> F_St1 (T2 n) n n iir2_ff_fb f (n, (y1, y0)) = let (r, y0') = f n y0 y1 in (r, (y0, y0')) biquad :: F_U5 n -> F_St1 (T4 n) n n biquad f (n, (x1, x0, y1, y0)) = let r = f n x0 x1 y0 y1 in (r, (x0, n, y0, r)) -- | sos = second order section sos_f :: Num n => T5 n -> F_U5 n sos_f (a0, a1, a2, b1, b2) x x1 x2 y1 y2 = a0 * x + a1 * x1 + a2 * x2 - b1 * y1 - b2 * y2 sos :: Num n => T5 n -> F_St1 (T4 n) n n sos p = biquad (sos_f p) -- | hp = high pass hpz1 :: Fractional n => F_St1 n n n hpz1 = fir1 (\n z0 -> 0.5 * (n - z0)) hpz2 :: Fractional n => F_St1 (T2 n) n n hpz2 = fir2 (\n z0 z1 -> 0.25 * (n - (2 * z0) + z1)) -- | lp = low pass lpz1 :: Fractional n => F_St1 n n n lpz1 = fir1 avg2 lpz2 :: Fractional n => F_St1 (T2 n) n n lpz2 = fir2 (\n z0 z1 -> 0.25 * (n + (2 * z0) + z1)) -- | bp = band pass bpz2 :: Fractional n => F_St1 (T2 n) n n bpz2 = fir2 (\n _z0 z1 -> 0.5 * (n - z1)) -- | br = band reject brz2 :: Fractional n => F_St1 (T2 n) n n brz2 = fir2 (\n _z0 z1 -> 0.5 * (n + z1)) -- | mavg = moving average mavg5 :: Fractional n => F_St1 (T4 n) n n mavg5 = fir4 avg5 mavg9 :: Fractional n => F_St1 (T8 n) n n mavg9 = fir8 avg9 {- | Sample rate (SR) to radians per sample (RPS). >>> sr_to_rps 44100 == 0.00014247585730565955 True -} sr_to_rps :: Floating n => n -> n sr_to_rps sr = two_pi / sr -- | resonz iir2_ff_fb function. param are for 'Filter.resonz_coef'. resonz_f :: Floating n => T3 n -> (n -> n -> n -> T2 n) resonz_f param x y1 y2 = let (a0, b1, b2) = Filter.resonz_coef param y0 = x + b1 * y1 + b2 * y2 in (a0 * (y0 - y2), y0) -- | ir = initialization rate resonz_ir :: Floating n => T3 n -> F_St1 (T2 n) n n resonz_ir p = iir2_ff_fb (resonz_f p) -- | rlpf = resonant low pass filter rlpf_f :: Floating n => (n -> n -> n) -> T3 n -> F_U3 n rlpf_f max_f param x y1 y2 = let (a0, b1, b2) = Filter.rlpf_coef max_f param in a0 * x + b1 * y1 + b2 * y2 rlpf_ir :: (Floating n, Ord n) => T3 n -> F_St1 (T2 n) n n rlpf_ir p = iir2 (rlpf_f max p) bw_hpf_ir :: Floating n => T2 n -> F_St1 (T4 n) n n bw_hpf_ir (sample_rate, f) = sos (Filter.bw_lpf_or_hpf_coef True sample_rate f) bw_lpf_ir :: Floating n => T2 n -> F_St1 (T4 n) n n bw_lpf_ir (sample_rate, f) = sos (Filter.bw_lpf_or_hpf_coef False sample_rate f) white_noise :: (R.RandomGen g, Fractional n, R.Random n) => F_St0 g n white_noise = R.randomR (-1.0, 1.0) brown_noise_f :: (Fractional n, Ord n) => n -> n -> n brown_noise_f x y1 = let z = x + y1 in if z > 1.0 then 2.0 - z else if z < (-1.0) then (-2.0) - z else z brown_noise :: (R.RandomGen g, Fractional n, R.Random n, Ord n) => F_St0 (g, n) n brown_noise (g, y1) = let (n, g') = white_noise g r = brown_noise_f (n / 8.0) y1 in (r, (g', r)) -- | pk_pinking_filter_f :: Fractional a => (a, a, a, a, a, a, a) -> a -> (a, (a, a, a, a, a, a, a)) pk_pinking_filter_f (b0, b1, b2, b3, b4, b5, b6) w = let b0' = 0.99886 * b0 + w * 0.0555179 b1' = 0.99332 * b1 + w * 0.0750759 b2' = 0.96900 * b2 + w * 0.1538520 b3' = 0.86650 * b3 + w * 0.3104856 b4' = 0.55000 * b4 + w * 0.5329522 b5' = -0.7616 * b5 - w * 0.0168980 p = b0 + b1 + b2 + b3 + b4 + b5 + b6 + w * 0.5362 b6' = w * 0.115926 in (p, (b0', b1', b2', b3', b4', b5', b6')) -- | pk_pinking_filter_economy_f :: Fractional a => (a, a, a) -> a -> (a, (a, a, a)) pk_pinking_filter_economy_f (b0, b1, b2) w = let b0' = 0.99765 * b0 + w * 0.0990460 b1' = 0.96300 * b1 + w * 0.2965164 b2' = 0.57000 * b2 + w * 1.0526913 p = b0 + b1 + b2 + w * 0.1848 in (p, (b0', b1', b2')) -- | dt must not be zero. decay_f :: Floating a => a -> a -> a -> a -> a decay_f sr dt x y1 = let b1 = exp (log 0.001 / (dt * sr)) in x + b1 * y1 {- | Given time /dt/ in frames construct 'iir1' 'lag' function. dt must not be zero. -} lag_f_frames :: Floating a => a -> a -> a -> a lag_f_frames dt x y1 = let b1 = exp (log 0.001 / dt) in x + b1 * (y1 - x) -- | 'lag_f_frames' with /dt/ in seconds. lag_f :: Floating a => a -> a -> a -> a -> a lag_f sr dt = lag_f_frames (dt * sr) lag :: Floating t => t -> F_St1 t (t, t) t lag sr ((i, t), st) = let r = lag_f sr t i st in (r, r) slope :: Num t => t -> F_St1 t t t slope sr = fir1 (\n z0 -> (n - z0) * sr) latch :: F_St1 t (t, Bool) t latch ((n, b), y1) = let r = if b then n else y1 in (r, r) as_trig :: (Fractional t, Ord t) => F_St1 t t Bool as_trig (n, y1) = (y1 <= 0.0 && n > 0.0, n) phasor :: RealFrac t => F_St1 t (Bool, t, t, t, t) t phasor ((trig, rate, start, end, resetPos), ph) = let r = if trig then resetPos else sc3_wrap (ph + rate) start end in (ph, r) -- > Sound.Sc3.Plot.plot_fn_r1_ln (\x -> mod_dif x 0 1) (0,4) mod_dif :: RealFrac a => a -> a -> a -> a mod_dif i j m = let d = absdif i j `sc3_mod` m h = m * 0.5 in h - absdif d h {- -- > Sound.Sc3.Plot.plot_fn_r1_ln (\x -> modDif x 0 1) (0,4) modDif :: BinaryOp a => a -> a -> a -> a modDif i j m = let d = absDif i j `modE` m h = m * 0.5 in h - absDif d h -} -- | * List Processing l_apply_f_st0 :: F_St0 st o -> st -> [o] l_apply_f_st0 f st = let (r, st') = f st in r : l_apply_f_st0 f st' {- | White noise >>> take 4 (l_white_noise 'α') [0.9687553280469108,0.808159221997721,-0.8993330152164296,0.23197278942699834] -} l_white_noise :: (Enum e, Fractional n, R.Random n) => e -> [n] l_white_noise e = l_apply_f_st0 white_noise (R.mkStdGen (fromEnum e)) {- | Brown noise >>> take 4 (l_brown_noise 'α') [0.12109441600586385,0.22211431875557897,0.10969769185352526,0.13869429053190005] -} l_brown_noise :: (Enum e, Fractional n, Ord n, R.Random n) => e -> [n] l_brown_noise e = l_apply_f_st0 brown_noise (R.mkStdGen (fromEnum e), 0.0) l_apply_f_st1 :: F_St1 st i o -> st -> [i] -> [o] l_apply_f_st1 f st xs = case xs of [] -> [] x : xs' -> let (r, st') = f (x, st) in r : l_apply_f_st1 f st' xs' l_lag :: Floating t => t -> [t] -> [t] -> [t] l_lag sr i t = l_apply_f_st1 (lag sr) 0 (zip i t) l_slope :: Floating t => t -> [t] -> [t] l_slope sr = l_apply_f_st1 (slope sr) 0 {- | Phasor >>> let rp = repeat >>> take 10 (l_phasor (rp False) (rp 1) (rp 0) (rp 4) (rp 0)) [0.0,1.0,2.0,3.0,0.0,1.0,2.0,3.0,0.0,1.0] -} l_phasor :: RealFrac n => [Bool] -> [n] -> [n] -> [n] -> [n] -> [n] l_phasor trig rate start end resetPos = let i = zip5 trig rate start end resetPos in l_apply_f_st1 phasor (Safe.headNote "l_phasor" start) i l_phasor_osc :: RealFrac n => n -> n -> [n] -> [n] l_phasor_osc sr k f = let rp = repeat in l_phasor (rp False) (map (cps_to_incr sr k) f) (rp 0) (rp k) (rp 0) l_sin_osc :: (Floating n, RealFrac n) => n -> [n] -> [n] l_sin_osc sr f = map sin (l_phasor_osc sr two_pi f) l_cos_osc :: (Floating n, RealFrac n) => n -> [n] -> [n] l_cos_osc sr f = map cos (l_phasor_osc sr two_pi f) l_hpz1 :: Fractional n => [n] -> [n] l_hpz1 = l_apply_f_st1 hpz1 0 l_hpz2 :: Fractional n => [n] -> [n] l_hpz2 = l_apply_f_st1 hpz2 (0, 0) l_lpz1 :: Fractional n => [n] -> [n] l_lpz1 = l_apply_f_st1 lpz1 0 l_lpz2 :: Fractional n => [n] -> [n] l_lpz2 = l_apply_f_st1 lpz2 (0, 0) l_bpz2 :: Fractional n => [n] -> [n] l_bpz2 = l_apply_f_st1 bpz2 (0, 0) l_brz2 :: Fractional n => [n] -> [n] l_brz2 = l_apply_f_st1 brz2 (0, 0) l_bw_hpf :: Floating n => T2 n -> [n] -> [n] l_bw_hpf p = l_apply_f_st1 (bw_hpf_ir p) (0, 0, 0, 0) l_bw_lpf :: Floating n => T2 n -> [n] -> [n] l_bw_lpf p = l_apply_f_st1 (bw_lpf_ir p) (0, 0, 0, 0) l_resonz_ir :: Floating n => T3 n -> [n] -> [n] l_resonz_ir p = l_apply_f_st1 (resonz_ir p) (0, 0) l_rlpf_ir :: (Floating n, Ord n) => T3 n -> [n] -> [n] l_rlpf_ir p = l_apply_f_st1 (rlpf_ir p) (0, 0) l_mavg5 :: Fractional n => [n] -> [n] l_mavg5 = l_apply_f_st1 mavg5 (0, 0, 0, 0) l_mavg9 :: Fractional n => [n] -> [n] l_mavg9 = l_apply_f_st1 mavg9 (0, 0, 0, 0, 0, 0, 0, 0) {- import Sound.Sc3.Plot {- hsc3-plot -} import Sound.Sc3.Plot.FFT {- hsc3-plot -} let n = take 4096 (l_white_noise 'α') let plotTable1 = plot_p1_ln . return plotTable1 n plotTable1 (take 4096 (l_brown_noise 'α')) plotTable1 (l_lpz1 n) plotTable1 (l_lpz2 n) plotTable1 (l_hpz1 n) plotTable1 (l_hpz2 n) plotTable1 (rfft_pure n) plotTable1 (rfft_pure (l_lpz1 n)) plotTable1 (rfft_pure (l_lpz2 n)) plotTable1 (rfft_pure (l_hpz1 n)) plotTable1 (rfft_pure (l_hpz2 n)) plotTable1 (rfft_pure (l_bpz2 n)) plotTable1 (rfft_pure (l_brz2 n)) plotTable1 (rfft_pure (l_bw_lpf (44100,9000) n)) plotTable1 (rfft_pure (l_bw_hpf (44100,9000) n)) plotTable1 (rfft_pure (l_resonz_ir (sr_to_rps 44100,440,0.1) n)) plotTable1 (rfft_pure (l_rlpf_ir (sr_to_rps 44100,1200,0.1) n)) import Sound.Sc3.Common.Math {- hsc3 -} plot_fft1_mnn 44100 (rfft_pure (l_bw_lpf (44100,midi_to_cps 60) n)) plot_fft1_mnn 44100 (rfft_pure (l_resonz_ir (sr_to_rps 44100,midi_to_cps 69,0.1) n)) plot_fft1_mnn 44100 (rfft_pure (l_rlpf_ir (sr_to_rps 44100,midi_to_cps 86,0.1) n)) plotTable1 (l_mavg9 (rfft_pure n)) plotTable1 (l_mavg9 (rfft_pure (l_lpz2 n))) plotTable1 (l_mavg9 (rfft_pure (l_hpz2 n))) plotTable1 (l_mavg9 (rfft_pure (l_bpz2 n))) plotTable1 (l_mavg9 (l_mavg9 (l_mavg9 (l_mavg9 (rfft_pure (l_brz2 n)))))) plotTable1 (take 512 (l_sin_osc 48000 (repeat 440))) plotTable1 (take 512 (l_cos_osc 48000 (repeat 440))) -}