module Language.Scheme.Numerical (
numSub
, numMul
, numDiv
, numAdd
, numMod
, numRationalize
, numBoolBinopEq
, numBoolBinopGt
, numBoolBinopGte
, numBoolBinopLt
, numBoolBinopLte
, numCast
, numDenominator
, numNumerator
, numInexact2Exact
, numExact2Inexact
, num2String
, unpackNum
, numericBinop
, numFloor
, numCeiling
, numTruncate
, numRound
, numExpt
, numSqrt
, numExp
, numLog
, numSin
, numCos
, numTan
, numAsin
, numAcos
, numAtan
, buildComplex
, numMakePolar
, numRealPart
, numImagPart
, numMagnitude
, numAngle
, numMakeRectangular
, isComplex
, isReal
, isRational
, isInteger
, isNumber
, isFloatAnInteger
, isNumNaN
, isNumInfinite
, isNumFinite
, isNumExact
, isNumInexact
) where
import Language.Scheme.Types
import Control.Monad.Error
import Data.Char hiding (isNumber)
import Data.Complex
import Data.Fixed
import Data.Ratio
import Numeric
import Text.Printf
numericBinop :: (Integer -> Integer -> Integer) -> [LispVal] -> ThrowsError LispVal
numericBinop _ singleVal@[_] = throwError $ NumArgs (Just 2) singleVal
numericBinop op aparams = mapM unpackNum aparams >>= return . Number . foldl1 op
foldlM :: Monad m => (a -> b -> m a) -> a -> [b] -> m a
foldlM f v (x : xs) = (f v x) >>= \ a -> foldlM f a xs
foldlM _ v [] = return v
foldl1M :: Monad m => (a -> a -> m a) -> [a] -> m a
foldl1M f (x : xs) = foldlM f x xs
foldl1M _ _ = error "Unexpected error in foldl1M"
numAdd :: [LispVal] -> ThrowsError LispVal
numAdd [] = return $ Number 0
numAdd aparams = do
foldl1M (\ a b -> doAdd =<< (numCast [a, b])) aparams
where doAdd (List [(Number a), (Number b)]) = return $ Number $ a + b
doAdd (List [(Float a), (Float b)]) = return $ Float $ a + b
doAdd (List [(Rational a), (Rational b)]) = return $ Rational $ a + b
doAdd (List [(Complex a), (Complex b)]) = return $ Complex $ a + b
doAdd _ = throwError $ Default "Unexpected error in +"
numSub :: [LispVal] -> ThrowsError LispVal
numSub [] = throwError $ NumArgs (Just 1) []
numSub [Number n] = return $ Number $ 1 * n
numSub [Float n] = return $ Float $ 1 * n
numSub [Rational n] = return $ Rational $ 1 * n
numSub [Complex n] = return $ Complex $ 1 * n
numSub aparams = do
foldl1M (\ a b -> doSub =<< (numCast [a, b])) aparams
where doSub (List [(Number a), (Number b)]) = return $ Number $ a b
doSub (List [(Float a), (Float b)]) = return $ Float $ a b
doSub (List [(Rational a), (Rational b)]) = return $ Rational $ a b
doSub (List [(Complex a), (Complex b)]) = return $ Complex $ a b
doSub _ = throwError $ Default "Unexpected error in -"
numMul :: [LispVal] -> ThrowsError LispVal
numMul [] = return $ Number 1
numMul aparams = do
foldl1M (\ a b -> doMul =<< (numCast [a, b])) aparams
where doMul (List [(Number a), (Number b)]) = return $ Number $ a * b
doMul (List [(Float a), (Float b)]) = return $ Float $ a * b
doMul (List [(Rational a), (Rational b)]) = return $ Rational $ a * b
doMul (List [(Complex a), (Complex b)]) = return $ Complex $ a * b
doMul _ = throwError $ Default "Unexpected error in *"
numDiv :: [LispVal] -> ThrowsError LispVal
numDiv [] = throwError $ NumArgs (Just 1) []
numDiv [Number 0] = throwError $ DivideByZero
numDiv [Rational 0] = throwError $ DivideByZero
numDiv [Number n] = return $ Rational $ 1 / (fromInteger n)
numDiv [Float n] = return $ Float $ 1.0 / n
numDiv [Rational n] = return $ Rational $ 1 / n
numDiv [Complex n] = return $ Complex $ 1 / n
numDiv aparams = do
foldl1M (\ a b -> doDiv =<< (numCast [a, b])) aparams
where doDiv (List [(Number a), (Number b)]) = if b == 0
then throwError $ DivideByZero
else if (mod a b) == 0
then return $ Number $ div a b
else return $ Rational $ (fromInteger a) / (fromInteger b)
doDiv (List [(Float a), (Float b)]) = if b == 0.0
then throwError $ DivideByZero
else return $ Float $ a / b
doDiv (List [(Rational a), (Rational b)]) = if b == 0
then throwError $ DivideByZero
else return $ Rational $ a / b
doDiv (List [(Complex a), (Complex b)]) = if b == 0
then throwError $ DivideByZero
else return $ Complex $ a / b
doDiv _ = throwError $ Default "Unexpected error in /"
numMod :: [LispVal] -> ThrowsError LispVal
numMod [] = return $ Number 1
numMod aparams = do
foldl1M (\ a b -> doMod =<< (numCast [a, b])) aparams
where doMod (List [(Number a), (Number b)]) = return $ Number $ mod' a b
doMod (List [(Float a), (Float b)]) = return $ Float $ mod' a b
doMod (List [(Rational a), (Rational b)]) = return $ Rational $ mod' a b
doMod (List [(Complex _), (Complex _)]) = throwError $ Default "modulo not implemented for complex numbers"
doMod _ = throwError $ Default "Unexpected error in modulo"
numBoolBinopCompare cmp n1 (n2 : ns) = do
List [n1', n2'] <- numCast [n1, n2]
result <- cmp n1' n2'
case result of
Bool True -> numBoolBinopCompare cmp n2' ns
_ -> return $ Bool False
numBoolBinopCompare _ _ _ = return $ Bool True
numBoolBinopEq :: [LispVal] -> ThrowsError LispVal
numBoolBinopEq [] = throwError $ NumArgs (Just 0) []
numBoolBinopEq (n : ns) = numBoolBinopCompare cmp n ns
where
f a b = a == b
cmp (Number a) (Number b) = return $ Bool $ f a b
cmp (Float a) (Float b) = return $ Bool $ f a b
cmp (Rational a) (Rational b) = return $ Bool $ f a b
cmp (Complex a) (Complex b) = return $ Bool $ f a b
cmp _ _ = throwError $ Default "Unexpected error in ="
numBoolBinopGt :: [LispVal] -> ThrowsError LispVal
numBoolBinopGt [] = throwError $ NumArgs (Just 0) []
numBoolBinopGt (n : ns) = numBoolBinopCompare cmp n ns
where
f a b = a > b
cmp (Number a) (Number b) = return $ Bool $ f a b
cmp (Float a) (Float b) = return $ Bool $ f a b
cmp (Rational a) (Rational b) = return $ Bool $ f a b
cmp _ _ = throwError $ Default "Unexpected error in >"
numBoolBinopGte :: [LispVal] -> ThrowsError LispVal
numBoolBinopGte [] = throwError $ NumArgs (Just 0) []
numBoolBinopGte (n : ns) = numBoolBinopCompare cmp n ns
where
f a b = a >= b
cmp (Number a) (Number b) = return $ Bool $ f a b
cmp (Float a) (Float b) = return $ Bool $ f a b
cmp (Rational a) (Rational b) = return $ Bool $ f a b
cmp _ _ = throwError $ Default "Unexpected error in >="
numBoolBinopLt :: [LispVal] -> ThrowsError LispVal
numBoolBinopLt [] = throwError $ NumArgs (Just 0) []
numBoolBinopLt (n : ns) = numBoolBinopCompare cmp n ns
where
f a b = a < b
cmp (Number a) (Number b) = return $ Bool $ f a b
cmp (Float a) (Float b) = return $ Bool $ f a b
cmp (Rational a) (Rational b) = return $ Bool $ f a b
cmp _ _ = throwError $ Default "Unexpected error in <"
numBoolBinopLte :: [LispVal] -> ThrowsError LispVal
numBoolBinopLte [] = throwError $ NumArgs (Just 0) []
numBoolBinopLte (n : ns) = numBoolBinopCompare cmp n ns
where
f a b = a <= b
cmp (Number a) (Number b) = return $ Bool $ f a b
cmp (Float a) (Float b) = return $ Bool $ f a b
cmp (Rational a) (Rational b) = return $ Bool $ f a b
cmp _ _ = throwError $ Default "Unexpected error in <="
numCast :: [LispVal] -> ThrowsError LispVal
numCast [a@(Number _), b@(Number _)] = return $ List [a, b]
numCast [a@(Float _), b@(Float _)] = return $ List [a, b]
numCast [a@(Rational _), b@(Rational _)] = return $ List [a, b]
numCast [a@(Complex _), b@(Complex _)] = return $ List [a, b]
numCast [(Number a), b@(Float _)] = return $ List [Float $ fromInteger a, b]
numCast [(Number a), b@(Rational _)] = return $ List [Rational $ fromInteger a, b]
numCast [(Number a), b@(Complex _)] = return $ List [Complex $ fromInteger a, b]
numCast [a@(Float _), (Number b)] = return $ List [a, Float $ fromInteger b]
numCast [a@(Float _), (Rational b)] = return $ List [a, Float $ fromRational b]
numCast [(Float a), b@(Complex _)] = return $ List [Complex $ a :+ 0, b]
numCast [a@(Rational _), (Number b)] = return $ List [a, Rational $ fromInteger b]
numCast [(Rational a), b@(Float _)] = return $ List [Float $ fromRational a, b]
numCast [(Rational a), b@(Complex _)] = return $ List [Complex $ (fromInteger $ numerator a) / (fromInteger $ denominator a), b]
numCast [a@(Complex _), (Number b)] = return $ List [a, Complex $ fromInteger b]
numCast [a@(Complex _), (Float b)] = return $ List [a, Complex $ b :+ 0]
numCast [a@(Complex _), (Rational b)] = return $ List [a, Complex $ (fromInteger $ numerator b) / (fromInteger $ denominator b)]
numCast [a, b] = case a of
Number _ -> doThrowError b
Float _ -> doThrowError b
Rational _ -> doThrowError b
Complex _ -> doThrowError b
_ -> doThrowError a
where doThrowError num = throwError $ TypeMismatch "number" num
numCast _ = throwError $ Default "Unexpected error in numCast"
numRationalize :: [LispVal] -> ThrowsError LispVal
numRationalize [(Number n)] = return $ Rational $ toRational n
numRationalize [(Float n)] = return $ Rational $ toRational n
numRationalize [n@(Rational _)] = return n
numRationalize [x] = throwError $ TypeMismatch "number" x
numRationalize badArgList = throwError $ NumArgs (Just 1) badArgList
numRound :: [LispVal] -> ThrowsError LispVal
numRound [n@(Number _)] = return n
numRound [(Rational n)] = return $ Number $ round n
numRound [(Float n)] = return $ Float $ fromInteger $ round n
numRound [(Complex n)] = do
return $ Complex $ (fromInteger $ round $ realPart n) :+ (fromInteger $ round $ imagPart n)
numRound [x] = throwError $ TypeMismatch "number" x
numRound badArgList = throwError $ NumArgs (Just 1) badArgList
numFloor :: [LispVal] -> ThrowsError LispVal
numFloor [n@(Number _)] = return n
numFloor [(Rational n)] = return $ Number $ floor n
numFloor [(Float n)] = return $ Float $ fromInteger $ floor n
numFloor [(Complex n)] = do
return $ Complex $ (fromInteger $ floor $ realPart n) :+ (fromInteger $ floor $ imagPart n)
numFloor [x] = throwError $ TypeMismatch "number" x
numFloor badArgList = throwError $ NumArgs (Just 1) badArgList
numCeiling :: [LispVal] -> ThrowsError LispVal
numCeiling [n@(Number _)] = return n
numCeiling [(Rational n)] = return $ Number $ ceiling n
numCeiling [(Float n)] = return $ Float $ fromInteger $ ceiling n
numCeiling [(Complex n)] = do
return $ Complex $ (fromInteger $ ceiling $ realPart n) :+ (fromInteger $ ceiling $ imagPart n)
numCeiling [x] = throwError $ TypeMismatch "number" x
numCeiling badArgList = throwError $ NumArgs (Just 1) badArgList
numTruncate :: [LispVal] -> ThrowsError LispVal
numTruncate [n@(Number _)] = return n
numTruncate [(Rational n)] = return $ Number $ truncate n
numTruncate [(Float n)] = return $ Float $ fromInteger $ truncate n
numTruncate [(Complex n)] = do
return $ Complex $ (fromInteger $ truncate $ realPart n) :+ (fromInteger $ truncate $ imagPart n)
numTruncate [x] = throwError $ TypeMismatch "number" x
numTruncate badArgList = throwError $ NumArgs (Just 1) badArgList
numSin :: [LispVal] -> ThrowsError LispVal
numSin [(Number n)] = return $ Float $ sin $ fromInteger n
numSin [(Float n)] = return $ Float $ sin n
numSin [(Rational n)] = return $ Float $ sin $ fromRational n
numSin [(Complex n)] = return $ Complex $ sin n
numSin [x] = throwError $ TypeMismatch "number" x
numSin badArgList = throwError $ NumArgs (Just 1) badArgList
numCos :: [LispVal] -> ThrowsError LispVal
numCos [(Number n)] = return $ Float $ cos $ fromInteger n
numCos [(Float n)] = return $ Float $ cos n
numCos [(Rational n)] = return $ Float $ cos $ fromRational n
numCos [(Complex n)] = return $ Complex $ cos n
numCos [x] = throwError $ TypeMismatch "number" x
numCos badArgList = throwError $ NumArgs (Just 1) badArgList
numTan :: [LispVal] -> ThrowsError LispVal
numTan [(Number n)] = return $ Float $ tan $ fromInteger n
numTan [(Float n)] = return $ Float $ tan n
numTan [(Rational n)] = return $ Float $ tan $ fromRational n
numTan [(Complex n)] = return $ Complex $ tan n
numTan [x] = throwError $ TypeMismatch "number" x
numTan badArgList = throwError $ NumArgs (Just 1) badArgList
numAsin :: [LispVal] -> ThrowsError LispVal
numAsin [(Number n)] = return $ Float $ asin $ fromInteger n
numAsin [(Float n)] = return $ Float $ asin n
numAsin [(Rational n)] = return $ Float $ asin $ fromRational n
numAsin [(Complex n)] = return $ Complex $ asin n
numAsin [x] = throwError $ TypeMismatch "number" x
numAsin badArgList = throwError $ NumArgs (Just 1) badArgList
numAcos :: [LispVal] -> ThrowsError LispVal
numAcos [(Number n)] = return $ Float $ acos $ fromInteger n
numAcos [(Float n)] = return $ Float $ acos n
numAcos [(Rational n)] = return $ Float $ acos $ fromRational n
numAcos [(Complex n)] = return $ Complex $ acos n
numAcos [x] = throwError $ TypeMismatch "number" x
numAcos badArgList = throwError $ NumArgs (Just 1) badArgList
numAtan :: [LispVal] -> ThrowsError LispVal
numAtan [(Number n)] = return $ Float $ atan $ fromInteger n
numAtan [Number y, Number x] = return $ Float $ phase $ (fromInteger x) :+ (fromInteger y)
numAtan [(Float n)] = return $ Float $ atan n
numAtan [Float y, Float x] = return $ Float $ phase $ x :+ y
numAtan [(Rational n)] = return $ Float $ atan $ fromRational n
numAtan [Rational y, Rational x] = return $ Float $ phase $ (fromRational x) :+ (fromRational y)
numAtan [(Complex n)] = return $ Complex $ atan n
numAtan [x] = throwError $ TypeMismatch "number" x
numAtan badArgList = throwError $ NumArgs (Just 1) badArgList
numSqrt :: [LispVal] -> ThrowsError LispVal
numSqrt [(Number n)] = if n >= 0 then return $ Float $ sqrt $ fromInteger n
else return $ Complex $ sqrt ((fromInteger n) :+ 0)
numSqrt [(Float n)] = if n >= 0 then return $ Float $ sqrt n
else return $ Complex $ sqrt (n :+ 0)
numSqrt [(Rational n)] = numSqrt [Float $ fromRational n]
numSqrt [(Complex n)] = return $ Complex $ sqrt n
numSqrt [x] = throwError $ TypeMismatch "number" x
numSqrt badArgList = throwError $ NumArgs (Just 1) badArgList
numExpt :: [LispVal] -> ThrowsError LispVal
numExpt [(Number n), (Number p)] = return $ Float $ (fromInteger n) ^ p
numExpt [(Rational n), (Number p)] = return $ Float $ (fromRational n) ^ p
numExpt [(Float n), (Number p)] = return $ Float $ n ^ p
numExpt [(Complex n), (Number p)] = return $ Complex $ n ^ p
numExpt [_, y] = throwError $ TypeMismatch "integer" y
numExpt badArgList = throwError $ NumArgs (Just 2) badArgList
numExp :: [LispVal] -> ThrowsError LispVal
numExp [(Number n)] = return $ Float $ exp $ fromInteger n
numExp [(Float n)] = return $ Float $ exp n
numExp [(Rational n)] = return $ Float $ exp $ fromRational n
numExp [(Complex n)] = return $ Complex $ exp n
numExp [x] = throwError $ TypeMismatch "number" x
numExp badArgList = throwError $ NumArgs (Just 1) badArgList
numLog :: [LispVal] -> ThrowsError LispVal
numLog [(Number n)] = return $ Float $ log $ fromInteger n
numLog [Number n, Number base] = return $ Float $ logBase (fromInteger base) (fromInteger n)
numLog [(Float n)] = return $ Float $ log n
numLog [Float n, Number base] = return $ Float $ logBase (fromInteger base) n
numLog [(Rational n)] = return $ Float $ log $ fromRational n
numLog [Rational n, Number base] = return $ Float $ logBase (fromInteger base) (fromRational n)
numLog [(Complex n)] = return $ Complex $ log n
numLog [Complex n, Number base] = return $ Complex $ logBase (fromInteger base) n
numLog [x] = throwError $ TypeMismatch "number" x
numLog badArgList = throwError $ NumArgs (Just 1) badArgList
buildComplex :: LispVal
-> LispVal
-> ThrowsError LispVal
buildComplex (Number x) (Number y) = return $ Complex $ (fromInteger x) :+ (fromInteger y)
buildComplex (Number x) (Rational y) = return $ Complex $ (fromInteger x) :+ (fromRational y)
buildComplex (Number x) (Float y) = return $ Complex $ (fromInteger x) :+ y
buildComplex (Rational x) (Number y) = return $ Complex $ (fromRational x) :+ (fromInteger y)
buildComplex (Rational x) (Rational y) = return $ Complex $ (fromRational x) :+ (fromRational y)
buildComplex (Rational x) (Float y) = return $ Complex $ (fromRational x) :+ y
buildComplex (Float x) (Number y) = return $ Complex $ x :+ (fromInteger y)
buildComplex (Float x) (Rational y) = return $ Complex $ x :+ (fromRational y)
buildComplex (Float x) (Float y) = return $ Complex $ x :+ y
buildComplex x y = throwError $ TypeMismatch "number" $ List [x, y]
numMakeRectangular :: [LispVal] -> ThrowsError LispVal
numMakeRectangular [x, y] = buildComplex x y
numMakeRectangular badArgList = throwError $ NumArgs (Just 2) badArgList
numMakePolar :: [LispVal] -> ThrowsError LispVal
numMakePolar [(Float x), (Float y)] = return $ Complex $ mkPolar x y
numMakePolar [(Float _), y] = throwError $ TypeMismatch "real" y
numMakePolar [x, (Float _)] = throwError $ TypeMismatch "real real" $ x
numMakePolar badArgList = throwError $ NumArgs (Just 2) badArgList
numAngle :: [LispVal] -> ThrowsError LispVal
numAngle [(Complex c)] = return $ Float $ phase c
numAngle [x] = throwError $ TypeMismatch "complex number" x
numAngle badArgList = throwError $ NumArgs (Just 1) badArgList
numMagnitude :: [LispVal] -> ThrowsError LispVal
numMagnitude [(Complex c)] = return $ Float $ magnitude c
numMagnitude [x] = throwError $ TypeMismatch "complex number" x
numMagnitude badArgList = throwError $ NumArgs (Just 1) badArgList
numRealPart :: [LispVal] -> ThrowsError LispVal
numRealPart [(Complex c)] = return $ Float $ realPart c
numRealPart [x] = throwError $ TypeMismatch "complex number" x
numRealPart badArgList = throwError $ NumArgs (Just 1) badArgList
numImagPart :: [LispVal] -> ThrowsError LispVal
numImagPart [(Complex c)] = return $ Float $ imagPart c
numImagPart [x] = throwError $ TypeMismatch "complex number" x
numImagPart badArgList = throwError $ NumArgs (Just 1) badArgList
numNumerator :: [LispVal] -> ThrowsError LispVal
numNumerator [n@(Number _)] = return n
numNumerator [(Rational r)] = return $ Number $ numerator r
numNumerator [(Float f)] = return $ Float $ fromInteger . numerator . toRational $ f
numNumerator [x] = throwError $ TypeMismatch "rational number" x
numNumerator badArgList = throwError $ NumArgs (Just 1) badArgList
numDenominator :: [LispVal] -> ThrowsError LispVal
numDenominator [Number _] = return $ Number 1
numDenominator [(Rational r)] = return $ Number $ denominator r
numDenominator [(Float f)] = return $ Float $ fromInteger $ denominator $ toRational f
numDenominator [x] = throwError $ TypeMismatch "rational number" x
numDenominator badArgList = throwError $ NumArgs (Just 1) badArgList
numExact2Inexact :: [LispVal] -> ThrowsError LispVal
numExact2Inexact [(Number n)] = return $ Float $ fromInteger n
numExact2Inexact [(Rational n)] = return $ Float $ fromRational n
numExact2Inexact [n@(Float _)] = return n
numExact2Inexact [n@(Complex _)] = return n
numExact2Inexact [badType] = throwError $ TypeMismatch "number" badType
numExact2Inexact badArgList = throwError $ NumArgs (Just 1) badArgList
numInexact2Exact :: [LispVal] -> ThrowsError LispVal
numInexact2Exact [n@(Number _)] = return n
numInexact2Exact [n@(Rational _)] = return n
numInexact2Exact [(Float n)] = return $ Number $ round n
numInexact2Exact [c@(Complex _)] = numRound [c]
numInexact2Exact [badType] = throwError $ TypeMismatch "number" badType
numInexact2Exact badArgList = throwError $ NumArgs (Just 1) badArgList
num2String :: [LispVal] -> ThrowsError LispVal
num2String [(Number n)] = return $ String $ show n
num2String [(Number n), (Number radix)] = do
case radix of
2 -> do
return $ String $ showIntAtBase 2 intToDigit n ""
8 -> return $ String $ printf "%o" n
10 -> return $ String $ printf "%d" n
16 -> return $ String $ printf "%x" n
_ -> throwError $ BadSpecialForm "Invalid radix value" $ Number radix
num2String [n@(Rational _)] = return $ String $ show n
num2String [(Float n)] = return $ String $ show n
num2String [n@(Complex _)] = return $ String $ show n
num2String [x] = throwError $ TypeMismatch "number" x
num2String badArgList = throwError $ NumArgs (Just 1) badArgList
isNumNaN :: [LispVal] -> ThrowsError LispVal
isNumNaN ([Float n]) = return $ Bool $ isNaN n
isNumNaN _ = return $ Bool False
isNumInfinite :: [LispVal] -> ThrowsError LispVal
isNumInfinite ([Float n]) = return $ Bool $ isInfinite n
isNumInfinite _ = return $ Bool False
isNumFinite :: [LispVal] -> ThrowsError LispVal
isNumFinite ([Number _]) = return $ Bool True
isNumFinite ([Float n]) = return $ Bool $ not $ isInfinite n
isNumFinite ([Complex _]) = return $ Bool True
isNumFinite ([Rational _]) = return $ Bool True
isNumFinite _ = return $ Bool False
isNumExact :: [LispVal] -> ThrowsError LispVal
isNumExact ([Number _]) = return $ Bool True
isNumExact ([Float _]) = return $ Bool False
isNumExact ([Complex _]) = return $ Bool False
isNumExact ([Rational _]) = return $ Bool True
isNumExact _ = return $ Bool False
isNumInexact :: [LispVal] -> ThrowsError LispVal
isNumInexact n@([Number _]) = return $ Bool False
isNumInexact n@([Float _]) = return $ Bool True
isNumInexact n@([Complex _]) = return $ Bool True
isNumInexact n@([Rational _]) = return $ Bool False
isNumInexact _ = return $ Bool False
isNumber :: [LispVal] -> ThrowsError LispVal
isNumber ([Number _]) = return $ Bool True
isNumber ([Float _]) = return $ Bool True
isNumber ([Complex _]) = return $ Bool True
isNumber ([Rational _]) = return $ Bool True
isNumber _ = return $ Bool False
isComplex :: [LispVal] -> ThrowsError LispVal
isComplex ([Complex _]) = return $ Bool True
isComplex ([Number _]) = return $ Bool True
isComplex ([Rational _]) = return $ Bool True
isComplex ([Float _]) = return $ Bool True
isComplex _ = return $ Bool False
isReal :: [LispVal] -> ThrowsError LispVal
isReal ([Number _]) = return $ Bool True
isReal ([Rational _]) = return $ Bool True
isReal ([Float _]) = return $ Bool True
isReal ([Complex c]) = return $ Bool $ (imagPart c) == 0
isReal _ = return $ Bool False
isRational :: [LispVal] -> ThrowsError LispVal
isRational ([Number _]) = return $ Bool True
isRational ([Rational _]) = return $ Bool True
isRational ([n@(Float _)]) = return $ Bool $ isFloatAnInteger n
isRational _ = return $ Bool False
isInteger :: [LispVal] -> ThrowsError LispVal
isInteger ([Number _]) = return $ Bool True
isInteger ([Complex n]) = do
return $ Bool $ (isFloatAnInteger $ Float $ realPart n) && (isFloatAnInteger $ Float $ imagPart n)
isInteger ([Rational n]) = do
let numer = abs $ numerator n
let denom = abs $ denominator n
return $ Bool $ (numer >= denom) && ((mod numer denom) == 0)
isInteger ([n@(Float _)]) = return $ Bool $ isFloatAnInteger n
isInteger _ = return $ Bool False
isFloatAnInteger :: LispVal -> Bool
isFloatAnInteger (Float n) = (floor n) == (ceiling n)
isFloatAnInteger _ = False
unpackNum :: LispVal -> ThrowsError Integer
unpackNum (Number n) = return n
unpackNum notNum = throwError $ TypeMismatch "number" notNum