{-# LANGUAGE CPP #-} {-# LANGUAGE MultiParamTypeClasses #-} #if __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Safe #-} #endif #if __GLASGOW_HASKELL__ >= 710 {-# LANGUAGE AutoDeriveTypeable #-} #endif ----------------------------------------------------------------------------- -- | -- Module : Data.PriorityQueue.FingerTree -- Copyright : (c) Ross Paterson 2008 -- License : BSD-style -- Maintainer : R.Paterson@city.ac.uk -- Stability : experimental -- Portability : non-portable (MPTCs and functional dependencies) -- -- Min-priority queues implemented using the 'FingerTree' type, -- following section 4.6 of -- -- * Ralf Hinze and Ross Paterson, -- \"Finger trees: a simple general-purpose data structure\", -- /Journal of Functional Programming/ 16:2 (2006) pp 197-217. -- <http://staff.city.ac.uk/~ross/papers/FingerTree.html> -- -- These have the same big-O complexity as skew heap implementations, -- but are approximately an order of magnitude slower. -- On the other hand, they are stable, so they can be used for fair -- queueing. They are also shallower, so that 'fmap' consumes less -- space. -- -- An amortized running time is given for each operation, with /n/ -- referring to the size of the priority queue. These bounds hold even -- in a persistent (shared) setting. -- -- /Note/: Many of these operations have the same names as similar -- operations on lists in the "Prelude". The ambiguity may be resolved -- using either qualification or the @hiding@ clause. -- ----------------------------------------------------------------------------- module HaskellWorks.Data.PriorityQueue.FingerTree ( PQueue, -- * Construction empty, singleton, union, insert, add, fromList, -- * Deconstruction null, minView, minViewWithKey ) where import Control.Arrow ((***)) import Data.Foldable (Foldable (foldMap)) import Data.Monoid import HaskellWorks.Data.FingerTree (FingerTree, Measured (..), ViewL (..), (<|), (><), (|>)) import Prelude hiding (null) import qualified Data.Semigroup as S import qualified HaskellWorks.Data.FingerTree as FT data Entry k v = Entry k v instance Functor (Entry k) where fmap f (Entry k v) = Entry k (f v) instance Foldable (Entry k) where foldMap f (Entry _ v) = f v data Prio k v = NoPrio | Prio k v appendPrio :: Ord k => Prio k v -> Prio k v -> Prio k v appendPrio x NoPrio = x appendPrio NoPrio y = y appendPrio x@(Prio kx _) y@(Prio ky _) = if kx <= ky then x else y {-# INLINE appendPrio #-} instance Ord k => S.Semigroup (Prio k v) where (<>) = appendPrio {-# INLINE (<>) #-} instance Ord k => Monoid (Prio k v) where mempty = NoPrio {-# INLINE mempty #-} mappend = appendPrio {-# INLINE mappend #-} instance Ord k => Measured (Prio k v) (Entry k v) where measure (Entry k v) = Prio k v -- | Priority queues. newtype PQueue k v = PQueue (FingerTree (Prio k v) (Entry k v)) instance Ord k => Functor (PQueue k) where fmap f (PQueue xs) = PQueue (FT.fmap' (fmap f) xs) instance Ord k => Foldable (PQueue k) where foldMap f q = case minView q of Nothing -> mempty Just (v, q') -> f v `mappend` foldMap f q' instance Ord k => S.Semigroup (PQueue k v) where (<>) = union {-# INLINE (<>) #-} instance Ord k => Monoid (PQueue k v) where mempty = empty {-# INLINE mempty #-} mappend = union {-# INLINE mappend #-} -- | /O(1)/. The empty priority queue. empty :: Ord k => PQueue k v empty = PQueue FT.empty -- | /O(1)/. A singleton priority queue. singleton :: Ord k => k -> v -> PQueue k v singleton k v = PQueue (FT.singleton (Entry k v)) -- | /O(log n)/. Add a (priority, value) pair to the front of a priority queue. -- -- * @'insert' k v q = 'union' ('singleton' k v) q@ -- -- If @q@ contains entries with the same priority @k@, 'minView' of -- @'insert' k v q@ will return them after this one. insert :: Ord k => k -> v -> PQueue k v -> PQueue k v insert k v (PQueue q) = PQueue (Entry k v <| q) -- | /O(log n)/. Add a (priority, value) pair to the back of a priority queue. -- -- * @'add' k v q = 'union' q ('singleton' k v)@ -- -- If @q@ contains entries with the same priority @k@, 'minView' of -- @'add' k v q@ will return them before this one. add :: Ord k => k -> v -> PQueue k v -> PQueue k v add k v (PQueue q) = PQueue (q |> Entry k v) -- | /O(log(min(n1,n2)))/. Concatenate two priority queues. -- 'union' is associative, with identity 'empty'. -- -- If there are entries with the same priority in both arguments, 'minView' -- of @'union' xs ys@ will return those from @xs@ before those from @ys@. union :: Ord k => PQueue k v -> PQueue k v -> PQueue k v union (PQueue xs) (PQueue ys) = PQueue (xs >< ys) -- | /O(n)/. Create a priority queue from a finite list of priorities -- and values. fromList :: Ord k => [(k, v)] -> PQueue k v fromList = foldr (uncurry insert) empty -- | /O(1)/. Is this the empty priority queue? null :: Ord k => PQueue k v -> Bool null (PQueue q) = FT.null q -- | /O(1)/ for the element, /O(log(n))/ for the reduced queue. -- Returns 'Nothing' for an empty map, or the value associated with the -- minimal priority together with the rest of the priority queue. -- -- * @'minView' 'empty' = 'Nothing'@ -- -- * @'minView' ('singleton' k v) = 'Just' (v, 'empty')@ -- minView :: Ord k => PQueue k v -> Maybe (v, PQueue k v) minView q = fmap (snd *** id) (minViewWithKey q) -- | /O(1)/ for the element, /O(log(n))/ for the reduced queue. -- Returns 'Nothing' for an empty map, or the minimal (priority, value) -- pair together with the rest of the priority queue. -- -- * @'minViewWithKey' 'empty' = 'Nothing'@ -- -- * @'minViewWithKey' ('singleton' k v) = 'Just' ((k, v), 'empty')@ -- -- * If @'minViewWithKey' qi = 'Just' ((ki, vi), qi')@ and @k1 <= k2@, -- then @'minViewWithKey' ('union' q1 q2) = 'Just' ((k1, v1), 'union' q1' q2)@ -- -- * If @'minViewWithKey' qi = 'Just' ((ki, vi), qi')@ and @k2 < k1@, -- then @'minViewWithKey' ('union' q1 q2) = 'Just' ((k2, v2), 'union' q1 q2')@ -- minViewWithKey :: Ord k => PQueue k v -> Maybe ((k, v), PQueue k v) minViewWithKey (PQueue q) | FT.null q = Nothing | otherwise = Just ((k, v), case FT.viewl r of _ :< r' -> PQueue (l >< r') _ -> error "can't happen") where Prio k v = measure q (l, r) = FT.split (below k) q below :: Ord k => k -> Prio k v -> Bool below _ NoPrio = False below k (Prio k' _) = k' <= k