{-# LANGUAGE CPP                   #-}
{-# LANGUAGE MultiParamTypeClasses #-}
#if __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE Safe                  #-}
#endif
#if __GLASGOW_HASKELL__ >= 710
{-# LANGUAGE AutoDeriveTypeable    #-}
#endif
-----------------------------------------------------------------------------
-- |
-- Module      :  Data.PriorityQueue.FingerTree
-- Copyright   :  (c) Ross Paterson 2008
-- License     :  BSD-style
-- Maintainer  :  R.Paterson@city.ac.uk
-- Stability   :  experimental
-- Portability :  non-portable (MPTCs and functional dependencies)
--
-- Min-priority queues implemented using the 'FingerTree' type,
-- following section 4.6 of
--
--  * Ralf Hinze and Ross Paterson,
--    \"Finger trees: a simple general-purpose data structure\",
--    /Journal of Functional Programming/ 16:2 (2006) pp 197-217.
--    <http://staff.city.ac.uk/~ross/papers/FingerTree.html>
--
-- These have the same big-O complexity as skew heap implementations,
-- but are approximately an order of magnitude slower.
-- On the other hand, they are stable, so they can be used for fair
-- queueing.  They are also shallower, so that 'fmap' consumes less
-- space.
--
-- An amortized running time is given for each operation, with /n/
-- referring to the size of the priority queue.  These bounds hold even
-- in a persistent (shared) setting.
--
-- /Note/: Many of these operations have the same names as similar
-- operations on lists in the "Prelude".  The ambiguity may be resolved
-- using either qualification or the @hiding@ clause.
--
-----------------------------------------------------------------------------

module HaskellWorks.Data.PriorityQueue.FingerTree (
    PQueue,
    -- * Construction
    empty,
    singleton,
    union,
    insert,
    add,
    fromList,
    -- * Deconstruction
    null,
    minView,
    minViewWithKey
    ) where

import Control.Arrow                ((***))
import Data.Foldable                (Foldable (foldMap))
import Data.Monoid
import HaskellWorks.Data.FingerTree (FingerTree, Measured (..), ViewL (..), (<|), (><), (|>))
import Prelude                      hiding (null)

import qualified Data.Semigroup               as S
import qualified HaskellWorks.Data.FingerTree as FT

data Entry k v = Entry k v

instance Functor (Entry k) where
    fmap f (Entry k v) = Entry k (f v)

instance Foldable (Entry k) where
    foldMap f (Entry _ v) = f v

data Prio k v = NoPrio | Prio k v

appendPrio :: Ord k => Prio k v -> Prio k v -> Prio k v
appendPrio x             NoPrio        = x
appendPrio NoPrio        y             = y
appendPrio x@(Prio kx _) y@(Prio ky _) = if kx <= ky then x else y
{-# INLINE appendPrio #-}

instance Ord k => S.Semigroup (Prio k v) where
  (<>) = appendPrio
  {-# INLINE (<>) #-}

instance Ord k => Monoid (Prio k v) where
    mempty  = NoPrio
    {-# INLINE mempty #-}
    mappend = appendPrio
    {-# INLINE mappend #-}

instance Ord k => Measured (Prio k v) (Entry k v) where
    measure (Entry k v) = Prio k v

-- | Priority queues.
newtype PQueue k v = PQueue (FingerTree (Prio k v) (Entry k v))

instance Ord k => Functor (PQueue k) where
    fmap f (PQueue xs) = PQueue (FT.fmap' (fmap f) xs)

instance Ord k => Foldable (PQueue k) where
    foldMap f q = case minView q of
        Nothing      -> mempty
        Just (v, q') -> f v `mappend` foldMap f q'

instance Ord k => S.Semigroup (PQueue k v) where
  (<>) = union
  {-# INLINE (<>) #-}

instance Ord k => Monoid (PQueue k v) where
  mempty = empty
  {-# INLINE mempty #-}
  mappend = union
  {-# INLINE mappend #-}

-- | /O(1)/. The empty priority queue.
empty :: Ord k => PQueue k v
empty = PQueue FT.empty

-- | /O(1)/. A singleton priority queue.
singleton :: Ord k => k -> v -> PQueue k v
singleton k v = PQueue (FT.singleton (Entry k v))

-- | /O(log n)/. Add a (priority, value) pair to the front of a priority queue.
--
-- * @'insert' k v q = 'union' ('singleton' k v) q@
--
-- If @q@ contains entries with the same priority @k@, 'minView' of
-- @'insert' k v q@ will return them after this one.
insert :: Ord k => k -> v -> PQueue k v -> PQueue k v
insert k v (PQueue q) = PQueue (Entry k v <| q)

-- | /O(log n)/. Add a (priority, value) pair to the back of a priority queue.
--
-- * @'add' k v q = 'union' q ('singleton' k v)@
--
-- If @q@ contains entries with the same priority @k@, 'minView' of
-- @'add' k v q@ will return them before this one.
add :: Ord k => k -> v -> PQueue k v -> PQueue k v
add k v (PQueue q) = PQueue (q |> Entry k v)

-- | /O(log(min(n1,n2)))/. Concatenate two priority queues.
-- 'union' is associative, with identity 'empty'.
--
-- If there are entries with the same priority in both arguments, 'minView'
-- of @'union' xs ys@ will return those from @xs@ before those from @ys@.
union :: Ord k => PQueue k v -> PQueue k v -> PQueue k v
union (PQueue xs) (PQueue ys) = PQueue (xs >< ys)

-- | /O(n)/. Create a priority queue from a finite list of priorities
-- and values.
fromList :: Ord k => [(k, v)] -> PQueue k v
fromList = foldr (uncurry insert) empty

-- | /O(1)/. Is this the empty priority queue?
null :: Ord k => PQueue k v -> Bool
null (PQueue q) = FT.null q

-- | /O(1)/ for the element, /O(log(n))/ for the reduced queue.
-- Returns 'Nothing' for an empty map, or the value associated with the
-- minimal priority together with the rest of the priority queue.
--
--  * @'minView' 'empty' = 'Nothing'@
--
--  * @'minView' ('singleton' k v) = 'Just' (v, 'empty')@
--
minView :: Ord k => PQueue k v -> Maybe (v, PQueue k v)
minView q = fmap (snd *** id) (minViewWithKey q)

-- | /O(1)/ for the element, /O(log(n))/ for the reduced queue.
-- Returns 'Nothing' for an empty map, or the minimal (priority, value)
-- pair together with the rest of the priority queue.
--
--  * @'minViewWithKey' 'empty' = 'Nothing'@
--
--  * @'minViewWithKey' ('singleton' k v) = 'Just' ((k, v), 'empty')@
--
--  * If @'minViewWithKey' qi = 'Just' ((ki, vi), qi')@ and @k1 <= k2@,
--    then @'minViewWithKey' ('union' q1 q2) = 'Just' ((k1, v1), 'union' q1' q2)@
--
--  * If @'minViewWithKey' qi = 'Just' ((ki, vi), qi')@ and @k2 < k1@,
--    then @'minViewWithKey' ('union' q1 q2) = 'Just' ((k2, v2), 'union' q1 q2')@
--
minViewWithKey :: Ord k => PQueue k v -> Maybe ((k, v), PQueue k v)
minViewWithKey (PQueue q)
  | FT.null q = Nothing
  | otherwise = Just ((k, v), case FT.viewl r of
    _ :< r' -> PQueue (l >< r')
    _       -> error "can't happen")
  where
    Prio k v = measure q
    (l, r) = FT.split (below k) q

below :: Ord k => k -> Prio k v -> Bool
below _ NoPrio      = False
below k (Prio k' _) = k' <= k