-- ------------------------------------------------------------ {- | Module : Control.Arrow.ArrowTree Copyright : Copyright (C) 2010 Uwe Schmidt License : MIT Maintainer : Uwe Schmidt (uwe\@fh-wedel.de) Stability : stable Portability: portable List arrows for tree processing. Trees that implement the "Data.Tree.Class" interface, can be processed with these arrows. -} -- ------------------------------------------------------------ module Control.Arrow.ArrowTree ( ArrowTree(..) , Tree ) where import Data.Tree.Class (Tree) import qualified Data.Tree.Class as T hiding (Tree) import Control.Arrow import Control.Arrow.ArrowList import Control.Arrow.ArrowIf infixl 5 />, //>, </ -- ------------------------------------------------------------ -- | The interface for tree arrows -- -- all functions have default implementations class (ArrowPlus a, ArrowIf a) => ArrowTree a where -- | construct a leaf mkLeaf :: Tree t => b -> a c (t b) mkLeaf = constA . T.mkLeaf {-# INLINE mkLeaf #-} -- | construct an inner node mkTree :: Tree t => b -> [t b] -> a c (t b) mkTree n = constA . T.mkTree n {-# INLINE mkTree #-} -- | select the children of the root of a tree getChildren :: Tree t => a (t b) (t b) getChildren = arrL T.getChildren {-# INLINE getChildren #-} -- | select the node info of the root of a tree getNode :: Tree t => a (t b) b getNode = arr T.getNode {-# INLINE getNode #-} -- | select the attribute of the root of a tree hasNode :: Tree t => (b -> Bool) -> a (t b) (t b) hasNode p = (getNode >>> isA p) `guards` this {-# INLINE hasNode #-} -- | substitute the children of the root of a tree setChildren :: Tree t => [t b] -> a (t b) (t b) setChildren cs = arr (T.setChildren cs) {-# INLINE setChildren #-} -- | substitute the attribute of the root of a tree setNode :: Tree t => b -> a (t b) (t b) setNode n = arr (T.setNode n) {-# INLINE setNode #-} -- | edit the children of the root of a tree changeChildren :: Tree t => ([t b] -> [t b]) -> a (t b) (t b) changeChildren csf = arr (T.changeChildren csf) {-# INLINE changeChildren #-} -- | edit the attribute of the root of a tree changeNode :: Tree t => (b -> b) -> a (t b) (t b) changeNode nf = arr (T.changeNode nf) {-# INLINE changeNode #-} -- compound arrows -- | apply an arrow element wise to all children of the root of a tree -- collect these results and substitute the children with this result -- -- example: @ processChildren isText @ deletes all subtrees, for which isText does not hold -- -- example: @ processChildren (none \`when\` isCmt) @ removes all children, for which isCmt holds processChildren :: Tree t => a (t b) (t b) -> a (t b) (t b) processChildren f = arr T.getNode &&& listA (arrL T.getChildren >>> f) -- new children, deterministic filter: single element result >>> arr2 T.mkTree -- | similar to processChildren, but the new children are computed by processing -- the whole input tree -- -- example: @ replaceChildren (deep isText) @ selects all subtrees for which isText holds -- and substitutes the children component of the root node with this list replaceChildren :: Tree t => a (t b) (t b) -> a (t b) (t b) replaceChildren f = arr T.getNode &&& listA f -- compute new children >>> arr2 T.mkTree -- | -- pronounced \"slash\", meaning g inside f -- -- defined as @ f \/> g = f >>> getChildren >>> g @ -- -- example: @ hasName \"html\" \/> hasName \"body\" \/> hasName \"h1\" @ -- -- This expression selects -- all \"h1\" elements in the \"body\" element of an \"html\" element, an expression, that -- corresponds 1-1 to the XPath selection path \"html\/body\/h1\" (/>) :: Tree t => a b (t c) -> a (t c) d -> a b d f /> g = f >>> getChildren >>> g {-# INLINE (/>) #-} -- | -- pronounced \"double slash\", meaning g arbitrarily deep inside f -- -- defined as @ f \/\/> g = f >>> getChildren >>> deep g @ -- -- example: @ hasName \"html\" \/\/> hasName \"table\" @ -- -- This expression selects -- all top level \"table\" elements within an \"html\" element, an expression. -- Attantion: This does not correspond -- to the XPath selection path \"html\/\/table\". The latter on matches all table elements -- even nested ones, but @\/\/>@ gives in many cases the appropriate functionality. (//>) :: Tree t => a b (t c) -> a (t c) d -> a b d f //> g = f >>> getChildren >>> deep g {-# INLINE (//>) #-} -- | -- pronounced \"outside\" meaning f containing g -- -- defined as @ f \<\/ g = f \`containing\` (getChildren >>> g) @ (</) :: Tree t => a (t b) (t b) -> a (t b) (t b) -> a (t b) (t b) f </ g = f `containing` (getChildren >>> g) {-# INLINE (</) #-} -- | recursively searches a whole tree for subtrees, for which a predicate holds. -- The search is performed top down. When a tree is found, this becomes an element of the result -- list. The tree found is not further examined for any subtress, for which the predicate also could hold. -- See 'multi' for this kind of search. -- -- example: @ deep isHtmlTable @ selects all top level table elements in a document -- (with an appropriate definition for isHtmlTable) but no tables occuring within a table cell. deep :: Tree t => a (t b) c -> a (t b) c deep f = f -- success when applying f `orElse` (getChildren >>> deep f) -- seach children -- | recursively searches a whole tree for subrees, for which a predicate holds. -- The search is performed bottom up. -- -- example: @ deepest isHtmlTable @ selects all innermost table elements in a document -- but no table elements containing tables. See 'deep' and 'multi' for other search strategies. deepest :: Tree t => a (t b) c -> a (t b) c deepest f = (getChildren >>> deepest f) -- seach children `orElse` f -- no success: apply f to root -- | recursively searches a whole tree for subtrees, for which a predicate holds. -- The search is performed top down. All nodes of the tree are searched, even within the -- subtrees of trees for which the predicate holds. -- -- example: @ multi isHtmlTable @ selects all table elements, even nested ones. multi :: Tree t => a (t b) c -> a (t b) c multi f = f -- combine result for root <+> (getChildren >>> multi f) -- with result for all descendants -- | recursively transforms a whole tree by applying an arrow to all subtrees, -- this is done bottom up depth first, leaves first, root as last tree -- -- example: @ processBottomUp (getChildren \`when\` isHtmlFont) @ removes all font tags in a HTML document, even nested ones -- (with an appropriate definition of isHtmlFont) processBottomUp :: Tree t => a (t b) (t b) -> a (t b) (t b) processBottomUp f = processChildren (processBottomUp f) -- process all descendants first >>> f -- then process root -- | similar to 'processBottomUp', but recursively transforms a whole tree by applying an arrow to all subtrees -- with a top down depth first traversal strategie. In many cases 'processBottomUp' and 'processTopDown' -- give same results. processTopDown :: Tree t => a (t b) (t b) -> a (t b) (t b) processTopDown f = f -- first process root >>> processChildren (processTopDown f) -- then process all descendants of new root -- | recursively transforms a whole tree by applying an arrow to all subtrees, -- but transformation stops when a predicte does not hold for a subtree, -- leaves are transformed first processBottomUpWhenNot :: Tree t => a (t b) (t b) -> a (t b) (t b) -> a (t b) (t b) processBottomUpWhenNot f p = ( processChildren (processBottomUpWhenNot f p) >>> f ) `whenNot` p -- | recursively transforms a whole tree by applying an arrow to all subtrees, -- but transformation stops when a tree is successfully transformed. -- the transformation is done top down -- -- example: @ processTopDownUntil (isHtmlTable \`guards\` tranformTable) @ -- transforms all top level table elements into something else, but inner tables remain unchanged processTopDownUntil :: Tree t => a (t b) (t b) -> a (t b) (t b) processTopDownUntil f = f `orElse` processChildren (processTopDownUntil f) -- | computes a list of trees by applying an arrow to the input -- and inserts this list in front of index i in the list of children -- -- example: @ insertChildrenAt 0 (deep isCmt) @ selects all subtrees for which isCmt holds -- and copies theses in front of the existing children insertChildrenAt :: Tree t => Int -> a (t b) (t b) -> a (t b) (t b) insertChildrenAt i f = listA f &&& this >>> arr2 insertAt where insertAt newcs = T.changeChildren (\ cs -> let (cs1, cs2) = splitAt i cs in cs1 ++ newcs ++ cs2 ) -- | similar to 'insertChildrenAt', but the insertion position is searched with a predicate insertChildrenAfter :: Tree t => a (t b) (t b) -> a (t b) (t b) -> a (t b) (t b) insertChildrenAfter p f = replaceChildren ( ( ( listA getChildren >>> spanA p ) &&& listA f ) >>> arr2L (\ (xs1, xs2) xs -> xs1 ++ xs ++ xs2) ) -- | an arrow for inserting a whole subtree with some holes in it (a template) -- into a document. The holes can be filled with contents from the input. -- -- Example -- -- > insertTreeTemplateTest :: ArrowXml a => a b XmlTree -- > insertTreeTemplateTest -- > = doc -- > >>> -- > insertTreeTemplate template pattern -- > where -- > doc -- the input data -- > = constA "<x><y>The Title</y><z>The content</z></x>" -- > >>> xread -- > template -- the output template with 2 holes: xxx and yyy -- > = constA "<html><head><title>xxx</title></head><body><h1>yyy</h1></body></html>" -- > >>> xread -- > pattern -- > = [ hasText (== "xxx") -- fill the xxx hole with the input contents from element "x/y" -- > :-> ( getChildren >>> hasName "y" >>> deep isText ) -- > -- > , hasText (== "yyy") -- fill the yyy hole with the input contents from element "x/z" -- > :-> ( getChildren >>> hasName "z" >>> getChildren ) -- > ] -- -- computes the XML tree for the following document -- -- > "<html><head><title>The Title</title></head><body><h1>The content</h1></body></html>" insertTreeTemplate :: Tree t => a (t b) (t b) -> -- the the template [IfThen (a (t b) c) (a (t b) (t b))] -> -- the list of nodes in the template to be substituted a (t b) (t b) insertTreeTemplate template choices = insertTree $< this where insertTree t = template -- swap input and template >>> processTemplate where processTemplate = choiceA choices' -- check whether node is a "hole" within the template `orElse` processChildren processTemplate -- else descent into template tree choices' = map feedTree choices -- modify choices, such that the input is feed into the action arrows feedTree (cond :-> action) = cond :-> (constA t >>> action) -- the real input becomes the input at the holes