module Idris.Core.ProofTerm(ProofTerm, Goal(..), mkProofTerm, getProofTerm,
updateSolved, updateSolvedTerm, updateSolvedTerm',
bound_in, bound_in_term, refocus, updsubst,
Hole, RunTactic',
goal, atHole) where
import Idris.Core.Typecheck
import Idris.Core.Evaluate
import Idris.Core.TT
import Control.Monad.State.Strict
import Data.List
import Debug.Trace
data TermPath = Top
| AppL (AppStatus Name) TermPath Term
| AppR (AppStatus Name) Term TermPath
| InBind Name BinderPath Term
| InScope Name (Binder Term) TermPath
deriving Show
data BinderPath = Binder (Binder TermPath)
| LetT TermPath Term
| LetV Term TermPath
| GuessT TermPath Term
| GuessV Term TermPath
deriving Show
replaceTop :: TermPath -> TermPath -> TermPath
replaceTop p Top = p
replaceTop p (AppL s l t) = AppL s (replaceTop p l) t
replaceTop p (AppR s t r) = AppR s t (replaceTop p r)
replaceTop p (InBind n bp sc) = InBind n (replaceTopB p bp) sc
where
replaceTopB p (Binder b) = Binder (fmap (replaceTop p) b)
replaceTopB p (LetT t v) = LetT (replaceTop p t) v
replaceTopB p (LetV t v) = LetV t (replaceTop p v)
replaceTopB p (GuessT t v) = GuessT (replaceTop p t) v
replaceTopB p (GuessV t v) = GuessV t (replaceTop p v)
replaceTop p (InScope n b sc) = InScope n b (replaceTop p sc)
rebuildTerm :: Term -> TermPath -> Term
rebuildTerm tm Top = tm
rebuildTerm tm (AppL s p a) = App s (rebuildTerm tm p) a
rebuildTerm tm (AppR s f p) = App s f (rebuildTerm tm p)
rebuildTerm tm (InScope n b p) = Bind n b (rebuildTerm tm p)
rebuildTerm tm (InBind n bp sc) = Bind n (rebuildBinder tm bp) sc
rebuildBinder :: Term -> BinderPath -> Binder Term
rebuildBinder tm (Binder p) = fmap (rebuildTerm tm) p
rebuildBinder tm (LetT p t) = Let (rebuildTerm tm p) t
rebuildBinder tm (LetV v p) = Let v (rebuildTerm tm p)
rebuildBinder tm (GuessT p t) = Guess (rebuildTerm tm p) t
rebuildBinder tm (GuessV v p) = Guess v (rebuildTerm tm p)
findHole :: Name -> Env -> Term -> Maybe (TermPath, Env, Term)
findHole n env t = fh' env Top t where
fh' env path tm@(Bind x h sc)
| hole h && n == x = Just (path, env, tm)
fh' env path (App Complete _ _) = Nothing
fh' env path (App s f a)
| Just (p, env', tm) <- fh' env path a = Just (AppR s f p, env', tm)
| Just (p, env', tm) <- fh' env path f = Just (AppL s p a, env', tm)
fh' env path (Bind x b sc)
| Just (bp, env', tm) <- fhB env path b = Just (InBind x bp sc, env', tm)
| Just (p, env', tm) <- fh' ((x,b):env) path sc = Just (InScope x b p, env', tm)
fh' _ _ _ = Nothing
fhB env path (Let t v)
| Just (p, env', tm) <- fh' env path t = Just (LetT p v, env', tm)
| Just (p, env', tm) <- fh' env path v = Just (LetV t p, env', tm)
fhB env path (Guess t v)
| Just (p, env', tm) <- fh' env path t = Just (GuessT p v, env', tm)
| Just (p, env', tm) <- fh' env path v = Just (GuessV t p, env', tm)
fhB env path b
| Just (p, env', tm) <- fh' env path (binderTy b)
= Just (Binder (fmap (\_ -> p) b), env', tm)
fhB _ _ _ = Nothing
data ProofTerm = PT {
path :: TermPath,
subterm_env :: Env,
subterm :: Term,
updates :: [(Name, Term)] }
deriving Show
type RunTactic' a = Context -> Env -> Term -> StateT a TC Term
type Hole = Maybe Name
refocus :: Hole -> ProofTerm -> ProofTerm
refocus h t = let res = refocus' h t in res
refocus' (Just n) pt@(PT path env tm ups)
| Just (p', env', tm') <- findHole n env tm
= PT (replaceTop p' path) env' tm' ups
| Just (p', env', tm') <- findHole n [] (rebuildTerm tm (updateSolvedPath ups path))
= PT p' env' tm' []
| otherwise = pt
refocus' _ pt = pt
data Goal = GD { premises :: Env,
goalType :: Binder Term
}
mkProofTerm :: Term -> ProofTerm
mkProofTerm tm = PT Top [] tm []
getProofTerm :: ProofTerm -> Term
getProofTerm (PT path _ sub ups) = rebuildTerm sub (updateSolvedPath ups path)
same :: Eq a => Maybe a -> a -> Bool
same Nothing n = True
same (Just x) n = x == n
hole :: Binder b -> Bool
hole (Hole _) = True
hole (Guess _ _) = True
hole _ = False
updateSolvedTerm :: [(Name, Term)] -> Term -> Term
updateSolvedTerm xs x = fst $ updateSolvedTerm' xs x
updateSolvedTerm' :: [(Name, Term)] -> Term -> (Term, Bool)
updateSolvedTerm' [] x = (x, False)
updateSolvedTerm' xs x = updateSolved' xs x where
updateSolved' [] x = (x, False)
updateSolved' xs (Bind n (Hole ty) t)
| Just v <- lookup n xs
= case xs of
[_] -> (updsubst n v t, True)
_ -> let (t', _) = updateSolved' xs t in
(updsubst n v t', True)
updateSolved' xs tm@(Bind n b t)
| otherwise = let (t', ut) = updateSolved' xs t
(b', ub) = updateSolvedB' xs b in
if ut || ub then (Bind n b' t', True)
else (tm, False)
updateSolved' xs t@(App Complete f a) = (t, False)
updateSolved' xs t@(App s f a)
= let (f', uf) = updateSolved' xs f
(a', ua) = updateSolved' xs a in
if uf || ua then (App s f' a', True)
else (t, False)
updateSolved' xs t@(P _ n@(MN _ _) _)
| Just v <- lookup n xs = (v, True)
updateSolved' xs t@(P nt n ty)
= let (ty', ut) = updateSolved' xs ty in
if ut then (P nt n ty', True) else (t, False)
updateSolved' xs t = (t, False)
updateSolvedB' xs b@(Let t v) = let (t', ut) = updateSolved' xs t
(v', uv) = updateSolved' xs v in
if ut || uv then (Let t' v', True)
else (b, False)
updateSolvedB' xs b@(Guess t v) = let (t', ut) = updateSolved' xs t
(v', uv) = updateSolved' xs v in
if ut || uv then (Guess t' v', True)
else (b, False)
updateSolvedB' xs b = let (ty', u) = updateSolved' xs (binderTy b) in
if u then (b { binderTy = ty' }, u) else (b, False)
noneOf ns (P _ n _) | n `elem` ns = False
noneOf ns (App s f a) = noneOf ns a && noneOf ns f
noneOf ns (Bind n (Hole ty) t) = n `notElem` ns && noneOf ns ty && noneOf ns t
noneOf ns (Bind n b t) = noneOf ns t && noneOfB ns b
where
noneOfB ns (Let t v) = noneOf ns t && noneOf ns v
noneOfB ns (Guess t v) = noneOf ns t && noneOf ns v
noneOfB ns b = noneOf ns (binderTy b)
noneOf ns _ = True
updsubst :: Eq n => n ->
TT n ->
TT n ->
TT n
updsubst n v tm = fst $ subst' 0 tm
where
subst' i (V x) | i == x = (v, True)
subst' i (P _ x _) | n == x = (v, True)
subst' i t@(P nt x ty)
= let (ty', ut) = subst' i ty in
if ut then (P nt x ty', True) else (t, False)
subst' i t@(Bind x b sc) | x /= n
= let (b', ub) = substB' i b
(sc', usc) = subst' (i+1) sc in
if ub || usc then (Bind x b' sc', True) else (t, False)
subst' i t@(App Complete f a) = (t, False)
subst' i t@(App s f a) = let (f', uf) = subst' i f
(a', ua) = subst' i a in
if uf || ua then (App s f' a', True) else (t, False)
subst' i t@(Proj x idx) = let (x', u) = subst' i x in
if u then (Proj x' idx, u) else (t, False)
subst' i t = (t, False)
substB' i b@(Let t v) = let (t', ut) = subst' i t
(v', uv) = subst' i v in
if ut || uv then (Let t' v', True)
else (b, False)
substB' i b@(Guess t v) = let (t', ut) = subst' i t
(v', uv) = subst' i v in
if ut || uv then (Guess t' v', True)
else (b, False)
substB' i b = let (ty', u) = subst' i (binderTy b) in
if u then (b { binderTy = ty' }, u) else (b, False)
updateEnv :: [(Name, Term)] -> Env -> Env
updateEnv [] e = e
updateEnv ns [] = []
updateEnv ns ((n, b) : env) = (n, fmap (updateSolvedTerm ns) b) : updateEnv ns env
updateSolvedPath :: [(Name, Term)] -> TermPath -> TermPath
updateSolvedPath [] t = t
updateSolvedPath ns Top = Top
updateSolvedPath ns t@(AppL Complete _ _) = t
updateSolvedPath ns t@(AppR Complete _ _) = t
updateSolvedPath ns (AppL s p r) = AppL s (updateSolvedPath ns p) (updateSolvedTerm ns r)
updateSolvedPath ns (AppR s l p) = AppR s (updateSolvedTerm ns l) (updateSolvedPath ns p)
updateSolvedPath ns (InBind n b sc)
= InBind n (updateSolvedPathB b) (updateSolvedTerm ns sc)
where
updateSolvedPathB (Binder b) = Binder (fmap (updateSolvedPath ns) b)
updateSolvedPathB (LetT p v) = LetT (updateSolvedPath ns p) (updateSolvedTerm ns v)
updateSolvedPathB (LetV v p) = LetV (updateSolvedTerm ns v) (updateSolvedPath ns p)
updateSolvedPathB (GuessT p v) = GuessT (updateSolvedPath ns p) (updateSolvedTerm ns v)
updateSolvedPathB (GuessV v p) = GuessV (updateSolvedTerm ns v) (updateSolvedPath ns p)
updateSolvedPath ns (InScope n (Hole ty) t)
| Just v <- lookup n ns = case ns of
[_] -> updateSolvedPath [(n,v)] t
_ -> updateSolvedPath ns $
updateSolvedPath [(n,v)] t
updateSolvedPath ns (InScope n b sc)
= InScope n (fmap (updateSolvedTerm ns) b) (updateSolvedPath ns sc)
updateSolved :: [(Name, Term)] -> ProofTerm -> ProofTerm
updateSolved xs pt@(PT path env sub ups)
= PT path
(updateEnv xs (filter (\(n, t) -> n `notElem` map fst xs) env))
(updateSolvedTerm xs sub)
(ups ++ xs)
goal :: Hole -> ProofTerm -> TC Goal
goal h pt@(PT path env sub ups)
| otherwise = g [] (rebuildTerm sub (updateSolvedPath ups path))
where
g :: Env -> Term -> TC Goal
g env (Bind n b@(Guess _ _) sc)
| same h n = return $ GD env b
| otherwise
= gb env b `mplus` g ((n, b):env) sc
g env (Bind n b sc) | hole b && same h n = return $ GD env b
| otherwise
= g ((n, b):env) sc `mplus` gb env b
g env (App Complete f a) = fail "Can't find hole"
g env (App _ f a) = g env a `mplus` g env f
g env t = fail "Can't find hole"
gb env (Let t v) = g env v `mplus` g env t
gb env (Guess t v) = g env v `mplus` g env t
gb env t = g env (binderTy t)
atHole :: Hole -> RunTactic' a -> Context -> Env -> ProofTerm ->
StateT a TC (ProofTerm, Bool)
atHole h f c e pt
= do let PT path env sub ups = refocus h pt
(tm, u) <- atH f c env sub
return (PT path env tm ups, u)
where
updated o = do o' <- o
return (o', True)
ulift2 f c env op a b
= do (b', u) <- atH f c env b
if u then return (op a b', True)
else do (a', u) <- atH f c env a
return (op a' b', u)
atH :: RunTactic' a -> Context -> Env -> Term -> StateT a TC (Term, Bool)
atH f c env binder@(Bind n b@(Guess t v) sc)
| same h n = updated (f c env binder)
| otherwise
= do
(b', u) <- ulift2 f c env Guess t v
if u then return (Bind n b' sc, True)
else do (sc', u) <- atH f c ((n, b) : env) sc
return (Bind n b' sc', u)
atH f c env binder@(Bind n b sc)
| hole b && same h n = updated (f c env binder)
| otherwise
= do (sc', u) <- atH f c ((n, b) : env) sc
if u then return (Bind n b sc', True)
else do (b', u) <- atHb f c env b
return (Bind n b' sc', u)
atH tac c env (App s f a) = ulift2 tac c env (App s) f a
atH tac c env t = return (t, False)
atHb f c env (Let t v) = ulift2 f c env Let t v
atHb f c env (Guess t v) = ulift2 f c env Guess t v
atHb f c env t = do (ty', u) <- atH f c env (binderTy t)
return (t { binderTy = ty' }, u)
bound_in :: ProofTerm -> [Name]
bound_in (PT path _ tm ups) = bound_in_term (rebuildTerm tm (updateSolvedPath ups path))
bound_in_term :: Term -> [Name]
bound_in_term (Bind n b sc) = n : bi b ++ bound_in_term sc
where
bi (Let t v) = bound_in_term t ++ bound_in_term v
bi (Guess t v) = bound_in_term t ++ bound_in_term v
bi b = bound_in_term (binderTy b)
bound_in_term (App _ f a) = bound_in_term f ++ bound_in_term a
bound_in_term _ = []