module Idris.Elab.Rewrite(elabRewrite, elabRewriteLemma) where
import Idris.AbsSyntax
import Idris.AbsSyntaxTree
import Idris.Core.Elaborate
import Idris.Core.Evaluate
import Idris.Core.TT
import Idris.Delaborate
import Idris.Docstrings
import Idris.Error
import Control.Monad
import Control.Monad.State.Strict
import Data.List
import Debug.Trace
elabRewrite :: (PTerm -> ElabD ()) -> IState ->
FC -> Maybe Name -> PTerm -> PTerm -> Maybe PTerm -> ElabD ()
elabRewrite elab ist fc substfn_in rule sc_in newg
= do attack
sc <- case newg of
Nothing -> return sc_in
Just t -> do
letn <- getNameFrom (sMN 0 "rewrite_result")
return $ PLet fc letn fc t sc_in
(PRef fc [] letn)
tyn <- getNameFrom (sMN 0 "rty")
claim tyn RType
valn <- getNameFrom (sMN 0 "rval")
claim valn (Var tyn)
letn <- getNameFrom (sMN 0 "_rewrite_rule")
letbind letn (Var tyn) (Var valn)
focus valn
elab rule
compute
g <- goal
(tmv, rule_in) <- get_type_val (Var letn)
env <- get_env
let ttrule = normalise (tt_ctxt ist) env rule_in
rname <- unique_hole (sMN 0 "replaced")
case unApply ttrule of
(P _ (UN q) _, [lt, rt, l, r]) | q == txt "=" ->
do substfn <- findSubstFn substfn_in ist lt rt
let pred_tt = mkP (P Bound rname rt) l r g
when (g == pred_tt) $ lift $ tfail (NoRewriting l r g)
let pred = PLam fc rname fc Placeholder
(delab ist pred_tt)
let rewrite = stripImpls $
addImplBound ist (map fst env) (PApp fc (PRef fc [] substfn)
[pexp pred, pexp rule, pexp sc])
elab rewrite
solve
_ -> lift $ tfail (NotEquality tmv ttrule)
where
mkP :: TT Name ->
TT Name -> TT Name -> TT Name -> TT Name
mkP lt l r ty | l == ty = lt
mkP lt l r (App s f a)
= let f' = if (r /= f) then mkP lt l r f else f
a' = if (r /= a) then mkP lt l r a else a in
App s f' a'
mkP lt l r (Bind n b sc)
= let b' = mkPB b
sc' = if (r /= sc) then mkP lt l r sc else sc in
Bind n b' sc'
where mkPB (Let t v) = let t' = if (r /= t) then mkP lt l r t else t
v' = if (r /= v) then mkP lt l r v else v in
Let t' v'
mkPB b = let ty = binderTy b
ty' = if (r /= ty) then mkP lt l r ty else ty in
b { binderTy = ty' }
mkP lt l r x = x
stripImpls tm = mapPT phApps tm
phApps (PApp fc f args) = PApp fc f (map removeImp args)
where removeImp tm@(PImp{}) = tm { getTm = Placeholder }
removeImp t = t
phApps tm = tm
findSubstFn :: Maybe Name -> IState -> Type -> Type -> ElabD Name
findSubstFn Nothing ist lt rt
| lt == rt = return (sUN "rewrite__impl")
| (P _ lcon _, _) <- unApply lt,
(P _ rcon _, _) <- unApply rt,
lcon == rcon
= case lookupTyExact (rewrite_name lcon) (tt_ctxt ist) of
Just _ -> return (rewrite_name lcon)
Nothing -> rewriteFail lt rt
| otherwise = rewriteFail lt rt
where rewriteFail lt rt = lift . tfail .
Msg $ "Can't rewrite heterogeneous equality on types " ++
show (delab ist lt) ++ " and " ++ show (delab ist rt)
findSubstFn (Just substfn_in) ist lt rt
= case lookupTyName substfn_in (tt_ctxt ist) of
[(n, t)] -> return n
[] -> lift . tfail . NoSuchVariable $ substfn_in
more -> lift . tfail . CantResolveAlts $ map fst more
rewrite_name :: Name -> Name
rewrite_name n = sMN 0 (show n ++ "_rewrite_lemma")
data ParamInfo = Index
| Param
| ImplicitIndex
| ImplicitParam
deriving Show
getParamInfo :: Type -> [PArg] -> Int -> [Int] -> [ParamInfo]
getParamInfo (Bind n (Pi _ _ _) sc) (PExp{} : is) i ps
| i `elem` ps = Param : getParamInfo sc is (i + 1) ps
| otherwise = Index : getParamInfo sc is (i + 1) ps
getParamInfo (Bind n (Pi _ _ _) sc) (_ : is) i ps
| i `elem` ps = ImplicitParam : getParamInfo sc is (i + 1) ps
| otherwise = ImplicitIndex : getParamInfo sc is (i + 1) ps
getParamInfo _ _ _ _ = []
isParam Index = False
isParam Param = True
isParam ImplicitIndex = False
isParam ImplicitParam = True
elabRewriteLemma :: ElabInfo -> Name -> Type -> Idris ()
elabRewriteLemma info n cty_in =
do ist <- getIState
let cty = normalise (tt_ctxt ist) [] cty_in
let rewrite_lem = rewrite_name n
case lookupCtxtExact n (idris_datatypes ist) of
Nothing -> fail $ "Can't happen, elabRewriteLemma for " ++ show n
Just ti -> do
let imps = case lookupCtxtExact n (idris_implicits ist) of
Nothing -> repeat (pexp Placeholder)
Just is -> is
let pinfo = getParamInfo cty imps 0 (param_pos ti)
if all isParam pinfo
then return ()
else idrisCatch (mkLemma info rewrite_lem n pinfo cty)
(\_ -> return ())
mkLemma :: ElabInfo -> Name -> Name -> [ParamInfo] -> Type -> Idris ()
mkLemma info lemma tcon ps ty =
do ist <- getIState
let leftty = mkTy tcon ps (namesFrom "p" 0) (namesFrom "left" 0)
rightty = mkTy tcon ps (namesFrom "p" 0) (namesFrom "right" 0)
predty = bindIdxs ist ps ty (namesFrom "pred" 0) $
PPi expl (sMN 0 "rep") fc
(mkTy tcon ps (namesFrom "p" 0) (namesFrom "pred" 0))
(PType fc)
let xarg = sMN 0 "x"
let yarg = sMN 0 "y"
let parg = sMN 0 "P"
let eq = sMN 0 "eq"
let prop = sMN 0 "prop"
let lemTy = PPi impl xarg fc leftty $
PPi impl yarg fc rightty $
PPi expl parg fc predty $
PPi expl eq fc (PApp fc (PRef fc [] (sUN "="))
[pexp (PRef fc [] xarg),
pexp (PRef fc [] yarg)]) $
PPi expl prop fc (PApp fc (PRef fc [] parg)
[pexp (PRef fc [] yarg)]) $
PApp fc (PRef fc [] parg) [pexp (PRef fc [] xarg)]
let lemLHS = PApp fc (PRef fc [] lemma)
[pexp (PRef fc [] parg),
pexp (PRef fc [] (sUN "Refl")),
pexp (PRef fc [] prop)]
let lemRHS = PRef fc [] prop
rec_elabDecl info EAll info
(PTy emptyDocstring [] defaultSyntax fc [] lemma fc lemTy)
rec_elabDecl info EAll info
(PClauses fc [] lemma [PClause fc lemma lemLHS [] lemRHS []])
where
fc = emptyFC
namesFrom x i = sMN i (x ++ show i) : namesFrom x (i + 1)
mkTy fn pinfo ps is
= PApp fc (PRef fc [] fn) (mkArgs pinfo ps is)
mkArgs [] ps is = []
mkArgs (Param : pinfo) (p : ps) is
= pexp (PRef fc [] p) : mkArgs pinfo ps is
mkArgs (Index : pinfo) ps (i : is)
= pexp (PRef fc [] i) : mkArgs pinfo ps is
mkArgs (ImplicitParam : pinfo) (p : ps) is
= mkArgs pinfo ps is
mkArgs (ImplicitIndex : pinfo) ps (i : is)
= mkArgs pinfo ps is
mkArgs _ _ _ = []
bindIdxs ist [] ty is tm = tm
bindIdxs ist (Param : pinfo) (Bind n (Pi _ ty _) sc) is tm
= bindIdxs ist pinfo (instantiate (P Bound n ty) sc) is tm
bindIdxs ist (Index : pinfo) (Bind n (Pi _ ty _) sc) (i : is) tm
= PPi forall_imp i fc (delab ist ty)
(bindIdxs ist pinfo (instantiate (P Bound n ty) sc) is tm)
bindIdxs ist (ImplicitParam : pinfo) (Bind n (Pi _ ty _) sc) is tm
= bindIdxs ist pinfo (instantiate (P Bound n ty) sc) is tm
bindIdxs ist (ImplicitIndex : pinfo) (Bind n (Pi _ ty _) sc) (i : is) tm
= bindIdxs ist pinfo (instantiate (P Bound n ty) sc) is tm
bindIdxs _ _ _ _ tm = tm