java-adt: Create immutable algebraic data structures for Java.

[ java, program ] [ Propose Tags ] [ Report a vulnerability ]

A simple tool to create immutable algebraic data structures and visitors for Java (such as abstract syntax trees). The input syntax is similar to Haskell data types, and they will be compiled to Java class hierarchies.


[Skip to Readme]

Downloads

Maintainer's Corner

Package maintainers

For package maintainers and hackage trustees

Candidates

Versions [RSS] 0.2016.11.28, 0.2018.11.4, 1.0.20231204
Change log CHANGELOG.md
Dependencies array, base (>=4.6 && <5), pretty [details]
Tested with ghc ==9.8.1, ghc ==9.6.3, ghc ==9.4.8, ghc ==9.2.8, ghc ==9.0.2, ghc ==8.10.7, ghc ==8.8.4, ghc ==8.6.5, ghc ==8.4.4, ghc ==8.2.2, ghc ==8.0.2
License LicenseRef-OtherLicense
Author Andreas Abel
Maintainer Andreas Abel <andreas.abel@gu.se>
Category Java
Home page https://github.com/andreasabel/java-adt
Bug tracker https://github.com/andreasabel/java-adt/issues
Source repo head: git clone https://github.com/andreasabel/java-adt.git
Uploaded by AndreasAbel at 2023-12-04T19:22:15Z
Distributions LTSHaskell:1.0.20231204, Stackage:1.0.20231204
Reverse Dependencies 1 direct, 0 indirect [details]
Executables java-adt
Downloads 1801 total (17 in the last 30 days)
Rating (no votes yet) [estimated by Bayesian average]
Your Rating
  • λ
  • λ
  • λ
Status Docs not available [build log]
Last success reported on 2023-12-04 [all 1 reports]

Readme for java-adt-1.0.20231204

[back to package description]

java-adt

A tool to create immutable algebraic data structures and visitors for Java (such as abstract syntax trees). The input syntax is similar to Haskell data types, and they will be compiled to Java class hierarchies.

Installation

With a running Haskell installation, simply type into your shell

cabal install java-adt

and make sure your .cabal/bin/ (or similar) is part of your system PATH.

Example 1: Immutable linked lists with default visitor

Input: List.hs

data List A = Nil | Cons { head :: A, tail :: List A }

Invocation java-adt List.hs prints to standard output:

abstract class List<A> {
}

class Nil<A> extends List<A> {
    public Nil () {
    }
}

class Cons<A> extends List<A> {
    public A head;
    public List<A> tail;
    public Cons (A head, List<A> tail) {
        this.head = head;
        this.tail = tail;
    }
}

Invocation: java-adt -o List.java List.hs leaves output in List.java.

Invocation: java-adt -d List.hs outputs same but with default visitor on standard output:

abstract class List<A> {
    public abstract <R> R accept (ListVisitor<R,A> v);
}

class Nil<A> extends List<A> {
    public Nil () {
    }
    public <R> R accept (ListVisitor<R,A> v) {
        return v.visit (this);
    }
}

class Cons<A> extends List<A> {
    public A head;
    public List<A> tail;
    public Cons (A head, List<A> tail) {
        this.head = head;
        this.tail = tail;
    }
    public <R> R accept (ListVisitor<R,A> v) {
        return v.visit (this);
    }
}

interface ListVisitor<R,A> {
    public R visit (Nil<A> l);
    public R visit (Cons<A> l);
}

Example 2: A simple AST with custom visitor

Input file Exp.hs: (Note the use of Haskell lists in [Exp])

data Exp
  = EInt  { i :: Integer }
  | EAdd  { e1 :: Exp, e2 :: Exp }
  | ECall { f :: String, es :: [Exp] }
--visitor Integer EvalVisitor

Invocation java-ast -o Exp.java Exp.hs outputs into Exp.java:

import java.util.List;

abstract class Exp {
    public abstract Integer accept (EvalVisitor v);
}

class EInt extends Exp {
    public Integer i;
    public EInt (Integer i) {
        this.i = i;
    }
    public Integer accept (EvalVisitor v) {
        return v.visit (this);
    }
}

class EAdd extends Exp {
    public Exp e1;
    public Exp e2;
    public EAdd (Exp e1, Exp e2) {
        this.e1 = e1;
        this.e2 = e2;
    }
    public Integer accept (EvalVisitor v) {
        return v.visit (this);
    }
}

class ECall extends Exp {
    public String f;
    public List<Exp> es;
    public ECall (String f, List<Exp> es) {
        this.f = f;
        this.es = es;
    }
    public Integer accept (EvalVisitor v) {
        return v.visit (this);
    }
}

interface EvalVisitor {
    public Integer visit (EInt e);
    public Integer visit (EAdd e);
    public Integer visit (ECall e);
}

Input file grammar

The input file format is similar to Haskell data type declarations, with the special comment --visitor.

  datadecl    ::= 'data' uppername '=' constructors visitors

  constructor ::= uppername ['{' fieldlist '}']

  fieldlist   ::= fieldlist ',' field
                | field

  field       ::= lowername '::' type

  type        ::= type atom
                | atom

  atom        ::= name
                | '[' type ']'
                | '(' type ')'

  visitor     ::= '--visitor' type name

Limitations

  • Visitors do not support mutually recursive data types.
  • Record types with same constructor name as record name do not produce valid Java. E.g.
    data R = R { f :: A }
    
    creates two classes with name R and subsequent Java compilation errors.