{-# LANGUAGE CPP #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} #if __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} #endif #if __GLASGOW_HASKELL__ >= 708 {-# LANGUAGE DeriveDataTypeable #-} #endif ----------------------------------------------------------------------------- -- | -- Module : Control.Monad.Codensity -- Copyright : (C) 2008-2016 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : provisional -- Portability : non-portable (rank-2 polymorphism) -- ---------------------------------------------------------------------------- module Control.Monad.Codensity ( Codensity(..) , lowerCodensity , codensityToAdjunction, adjunctionToCodensity , codensityToRan, ranToCodensity , codensityToComposedRep, composedRepToCodensity , improve ) where import Control.Applicative import Control.Monad (MonadPlus(..)) import Control.Monad.Free import Control.Monad.IO.Class import Control.Monad.Reader.Class import Control.Monad.State.Class import Control.Monad.Trans.Class import Data.Functor.Adjunction import Data.Functor.Apply import Data.Functor.Kan.Ran import Data.Functor.Plus import Data.Functor.Rep #if __GLASGOW_HASKELL__ >= 708 import Data.Typeable #endif -- | -- @'Codensity' f@ is the Monad generated by taking the right Kan extension -- of any 'Functor' @f@ along itself (@Ran f f@). -- -- This can often be more \"efficient\" to construct than @f@ itself using -- repeated applications of @(>>=)@. -- -- See \"Asymptotic Improvement of Computations over Free Monads\" by Janis -- Voigtländer for more information about this type. -- -- <http://www.iai.uni-bonn.de/~jv/mpc08.pdf> newtype Codensity m a = Codensity { runCodensity :: forall b. (a -> m b) -> m b } #if __GLASGOW_HASKELL__ >= 708 deriving Typeable #endif instance Functor (Codensity k) where fmap f (Codensity m) = Codensity (\k -> m (k . f)) {-# INLINE fmap #-} instance Apply (Codensity f) where (<.>) = (<*>) {-# INLINE (<.>) #-} instance Applicative (Codensity f) where pure x = Codensity (\k -> k x) {-# INLINE pure #-} Codensity f <*> Codensity g = Codensity (\bfr -> f (\ab -> g (bfr . ab))) {-# INLINE (<*>) #-} instance Monad (Codensity f) where return = pure {-# INLINE return #-} m >>= k = Codensity (\c -> runCodensity m (\a -> runCodensity (k a) c)) {-# INLINE (>>=) #-} instance MonadIO m => MonadIO (Codensity m) where liftIO = lift . liftIO {-# INLINE liftIO #-} instance MonadTrans Codensity where lift m = Codensity (m >>=) {-# INLINE lift #-} instance Alt v => Alt (Codensity v) where Codensity m <!> Codensity n = Codensity (\k -> m k <!> n k) {-# INLINE (<!>) #-} instance Plus v => Plus (Codensity v) where zero = Codensity (const zero) {-# INLINE zero #-} {- instance Plus v => Alternative (Codensity v) where empty = zero (<|>) = (<!>) instance Plus v => MonadPlus (Codensity v) where mzero = zero mplus = (<!>) -} instance Alternative v => Alternative (Codensity v) where empty = Codensity (\_ -> empty) {-# INLINE empty #-} Codensity m <|> Codensity n = Codensity (\k -> m k <|> n k) {-# INLINE (<|>) #-} #if __GLASGOW_HASKELL__ >= 710 instance Alternative v => MonadPlus (Codensity v) #else instance MonadPlus v => MonadPlus (Codensity v) where mzero = Codensity (\_ -> mzero) {-# INLINE mzero #-} Codensity m `mplus` Codensity n = Codensity (\k -> m k `mplus` n k) {-# INLINE mplus #-} #endif -- | -- This serves as the *left*-inverse (retraction) of 'lift'. -- -- -- @ -- 'lowerCodensity' . 'lift' ≡ 'id' -- @ -- -- In general this is not a full 2-sided inverse, merely a retraction, as -- @'Codensity' m@ is often considerably "larger" than @m@. -- -- e.g. @'Codensity' ((->) s)) a ~ forall r. (a -> s -> r) -> s -> r@ -- could support a full complement of @'MonadState' s@ actions, while @(->) s@ -- is limited to @'MonadReader' s@ actions. #if __GLASGOW_HASKELL__ >= 710 lowerCodensity :: Applicative f => Codensity f a -> f a lowerCodensity a = runCodensity a pure #else lowerCodensity :: Monad m => Codensity m a -> m a lowerCodensity a = runCodensity a return #endif {-# INLINE lowerCodensity #-} -- | The 'Codensity' monad of a right adjoint is isomorphic to the -- monad obtained from the 'Adjunction'. -- -- @ -- 'codensityToAdjunction' . 'adjunctionToCodensity' ≡ 'id' -- 'adjunctionToCodensity' . 'codensityToAdjunction' ≡ 'id' -- @ codensityToAdjunction :: Adjunction f g => Codensity g a -> g (f a) codensityToAdjunction r = runCodensity r unit {-# INLINE codensityToAdjunction #-} adjunctionToCodensity :: Adjunction f g => g (f a) -> Codensity g a adjunctionToCodensity f = Codensity (\a -> fmap (rightAdjunct a) f) {-# INLINE adjunctionToCodensity #-} -- | The 'Codensity' monad of a representable 'Functor' is isomorphic to the -- monad obtained from the 'Adjunction' for which that 'Functor' is the right -- adjoint. -- -- @ -- 'codensityToComposedRep' . 'composedRepToCodensity' ≡ 'id' -- 'composedRepToCodensity' . 'codensityToComposedRep' ≡ 'id' -- @ -- -- @ -- codensityToComposedRep = 'ranToComposedRep' . 'codensityToRan' -- @ codensityToComposedRep :: Representable u => Codensity u a -> u (Rep u, a) codensityToComposedRep (Codensity f) = f (\a -> tabulate $ \e -> (e, a)) {-# INLINE codensityToComposedRep #-} -- | -- -- @ -- 'composedRepToCodensity' = 'ranToCodensity' . 'composedRepToRan' -- @ composedRepToCodensity :: Representable u => u (Rep u, a) -> Codensity u a composedRepToCodensity hfa = Codensity $ \k -> fmap (\(e, a) -> index (k a) e) hfa {-# INLINE composedRepToCodensity #-} -- | The 'Codensity' 'Monad' of a 'Functor' @g@ is the right Kan extension ('Ran') -- of @g@ along itself. -- -- @ -- 'codensityToRan' . 'ranToCodensity' ≡ 'id' -- 'ranToCodensity' . 'codensityToRan' ≡ 'id' -- @ codensityToRan :: Codensity g a -> Ran g g a codensityToRan (Codensity m) = Ran m {-# INLINE codensityToRan #-} ranToCodensity :: Ran g g a -> Codensity g a ranToCodensity (Ran m) = Codensity m {-# INLINE ranToCodensity #-} instance (Functor f, MonadFree f m) => MonadFree f (Codensity m) where wrap t = Codensity (\h -> wrap (fmap (\p -> runCodensity p h) t)) {-# INLINE wrap #-} instance MonadReader r m => MonadState r (Codensity m) where get = Codensity (ask >>=) {-# INLINE get #-} put s = Codensity (\k -> local (const s) (k ())) {-# INLINE put #-} instance MonadReader r m => MonadReader r (Codensity m) where ask = Codensity (ask >>=) {-# INLINE ask #-} local f m = Codensity $ \c -> ask >>= \r -> local f . runCodensity m $ local (const r) . c {-# INLINE local #-} -- | Right associate all binds in a computation that generates a free monad -- -- This can improve the asymptotic efficiency of the result, while preserving -- semantics. -- -- See \"Asymptotic Improvement of Computations over Free Monads\" by Janis -- Voightländer for more information about this combinator. -- -- <http://www.iai.uni-bonn.de/~jv/mpc08.pdf> improve :: Functor f => (forall m. MonadFree f m => m a) -> Free f a improve m = lowerCodensity m {-# INLINE improve #-}